


价格:666.66起
0
联系人:
电话:
地址:
潍坊西门子电缆6XV1840-2AH10
西门子变频器6SE6430-2UD31-8DB*代码 syckwel
西门子变频器6SE6430-2UD31-8DB*代码 EM241要求通讯的末端为标准的音频电话线,而不论局间的通信方式。西门子PLC选型指南。可编程控制器控制系统I/O点数估算I/O点数是衡量可编程控制器规模大小的重要指标。根据被控对象的输入信号与输出信号的总点数,选择相应规模的可编程控制器并留有10%~15%的I/O裕量。估算出被控对象上I/O点数后,就可选择点数相当的可编程控制器。如果是为了单机自动化或机电一体化产品,可选用小型机,如果控制系统较大,输入输出点数较多,被控制设备分散,就可选用大、中型可编程控制器。
继电器可以带AC220V和直流的负载。 检查变压器柜顶风机或柜底风机是否工作正常(如果柜底风机工作不正常,可能出现三相温度相差较大);测温电阻是否正常(有无断线、线路插头接触不良,如果接触不良,温度值将偏高);过滤网是否堵塞(拿一张A4纸置于过滤网上,看是否能吸附,否则需要清洁过滤网);变频器是否长期工作于过载状态;环境温度是否过高(环境。
内存估计用户程序所需内存容量要受到下面几个因素的影响:内存利用率;开关量输入输出点数;模拟量输入输出点数。内存利用率 用户编的程序通过编程器键入主机内,后是以机器语言的形式存放在内存中,同样的程序,不同厂家的产品,在把程序变成机器语言存放时所需要的内存数不同,我们把一个程序段中的接点数与存放该程序段所代表的机器语言所需的内存字数的比值称为内存利用率。高的利用率给用户带来好处。同样的程序可以减少内存量,从而降低内存投资。另外同样程序可缩短扫描周期时间,从而提高系统的响应。
西门子变频器6SE6430-2UD31-8DB*代码 故障处理:更换卡件。
第二次调用,我们用T22输入。
开关量输入输出的点数 可编程控制器开关量输入输出总点数是计算所需内存储器容量的重要根据。一般系统中,开关量输入和开关量输出的比为6:4。模拟量输入输出总点数 具有模拟量控制的系统就要用到数字传送和运算的功能指令,这些功能指令内存利用率较低,因此所占内存数要增加。
PC/PPI其实就是一根RS485/RS232的匹配电缆。
功能、结构要合理
西门子变频器6SE6430-2UD31-8DB*代码 将卡件拆开来看后发现里面的一个小的集成块已经被烧毁。
这个意思就是我们平常讨论说的,把所有功能都写到一个块里,然后去调用整个块。
单机控制往往是用一台可编程控制器控制一台设备,或者一台可编程控制器控制几台小设备,例如对原有系统的改造、完善其功能等。单机控制没有可编程控制器间的通信问题;但功能要求全面。选择箱体式结构的可编程控制器为好。若只有开关量控制,可选择F1、F2、FX、GE-1、C-20、S5-101、TI100、EX-40等品种。另外,国产化CKY-40H、D-40、CF-40、PCZ-40、ACMY-S256品种也可与进口货相媲美。若被控对象是开关量和模拟量共有,就要选择有相应功能可编程序控制器。模块式结构的产品构成系统灵活,易于扩充,但造价高,适于大型复杂的工业现场。
西门子变频器6SE6430-2UD31-8DB*代码 同时继电器通断的寿命一般在10万次左右。只能干这个事,为什么要特别些呢,干嘛不让FC一个人搞定就行了。所以在频繁通断的场合也适合用晶体管的3、S7-200CPU上的通讯口,通讯距离究竟有多远。
输入输出模块的选择可编程控制器输入模块是并转换来自现场设备(按钮、限位开关;接近开关等)的高电平信号为机器内部电平信号,模块类型分直流5、12、24、48、60V几种;交流115V和220V两种。由现场设备与模块之间的远近程度选择电压的大小。一般5、12、24V属低电平,传输距离不宜太远,例如5V的输入模块远不能超过10m,也就是说,距离较远的设备选用较高电压的模块比较可靠。另外高密度的输入模块如32点、64点,同时接通点数取决于输入电压和环境温度。一般讲,同时接通点数不得超过60%。为了提高系统的稳定性,必须考虑门槛(接通电平与关断电平之差)电平的大小。门槛电平值越大,抗干扰能力越强,传输距离也就越远
火力发电厂的锅炉给水泵,需要根据机组负荷的改变来调节给水压力和给水量。在几种调节方式中,因改变给水泵转速来调节流量具有明显的节能效果而被广泛采用。对于大容量机组的锅炉给水泵,通常以异步电动机为动力,几乎都是通过安装液力偶合器进行机械调速,并且这种调速方法具有空载起动电动机的良好作用[1]。
液力偶合器属于电厂辅助设备,目前大多数都是采用分散仪表监控,有的甚至脱控运行,亟待运用测控新技术,对其运行状态参数进行自动监测和控制。西门子S7一200PLC是一个非常好的选择,它性价比高、系统组装和构建网络非常灵活、而且具有PID调节指令功能,编程和调试非常方便,因此,基于西门子PLC的控制系统将极大地提高整机运行的可靠性和经济性。
1 调速原理
液力偶合器安装于异步电动机和给水泵之间,它是一种利用液体通过泵轮和涡轮来传递功率的传动装置,主要由泵轮、涡轮、旋转外壳和勺管等部件组成,如图1.1所示。工作时,输入轴从电动机处获得能量,通过中间轴,泵轮将机械能转变为工作腔内的液体动能,推动涡轮转动,再变成机械能传给输出轴,带动锅炉给水泵工作。
为适应机组工况的变化要求,在电动机转速恒定的情况下,调节勺管的开度,可改变偶合器工作腔里的充液量,不同的充液量可以得到不同的输出特性,因此,通过连续改变充液量既可实现输出轴的无级调速。
调速机构中的勺管,由电动执行器通过简单的机械机构驱动。电动执行器接受标准电流信号,将其转换成相应的转输出,因此,调节转速实际上是调节控制系统的输出模拟量信号,西门子S7一200PLC满足这一主要功能要求。
2 测控对象
1)转速调节系统
该系统最主要的测控对象是液力偶合器输出轴的转速。调速原理如图2.1所示,利用液位变送器,将反应锅炉水位的模拟量信号送给控制系统,同时利用测速变送器,将输出轴转速也反馈给控制系统,依据设定的PID控制算法计算后输出电流信号,电动执行器将之转换成相应的输出转,通过调节机构驱动勺管移动,其开度对应锅炉水位要求的泵轮转速。
2)工作油系统
液力偶合器工作腔内介质油的最佳工作温度为60°~70°C,油温高虽然有利于能量的传递,但过高反而有害无益,因此要限制工作油温度范围为35~100°C,采用铂电阻温度传感器,当油温高于110°C时报警,当油温高于130°C时停止主电机运行。另外在工作油冷却器入口和出口分别设置温度传感器,将入口油温度控制在60~100°C,将出口油度温控制在35~75°C。
3)润滑油系统
高转速、大功率液力偶合器带有滑动轴承,其润滑油系统独立于工作油系统,因此在输入轴、中间轴、输出轴等处设置6个铂电阻温度传感器,测量滑动轴承温度,避免温度过高使润滑性能变差,烧坏轴瓦。限定润滑油温度范围在35~85°C,当油温高于90°C时报警,当油温高于95°C时停止主机运行。另外在润滑油冷却器入口和出口分别设置温度传感器,将入口油温度控制在45~65°C,将出口油温度控制在35~55°C。
为防止压力过低供油不足而造成润滑情况恶劣,限定润滑油压力范围在0.2~0.3Mpa,监测母管油压,当油压低于0.1Mpa时报警,并且启动辅助油泵,低于0.05Mpa则必须停止主电机运行。另外还要限定滤油器进出口压力差不超过0.6Mpa 。
3 硬件组成
反映系统状态的主要参数是水位、转速、油温、油压等物理量,选用各类变送器转换为4~20mA的标准电流信号,共计14路模拟量;各电机、阀门、报警指示灯等开关量输入输出共30点,因此系统的配置不甚复杂。采用西门子S7一200系列小型机控制,一旦发生故障影响面小、容易查找。
首先选用CPU226模块,具有24点输出/16点输入,可连接7个扩展模块,提供1000mA的总线电流,并且具有32位浮点运算功能和内置集成的PID调节运算指令,非常适合液力偶合器调速的锅炉供水系统。
其次扩展EM231模拟量输入模块(4路模拟量输入,消耗DC5V电流为10mA)3块;扩展EM235模拟量输入输出模块(4路模拟量输入/1路模拟量输出,消耗DC5V电流为10mA)1块,通过DIP开关进行设置,输入输出端口时能够自动完成A/D和D/A的转换,即标准电流信号与一个字长(16bit)的数字信号的自动转换。系统总扩展模块数为4,CPU226的电源能满足所有扩展模块消耗DC5V总线电流的能力。
另外,CPU226本机集成了两个通讯口,其中一个使用 MPI协议,使液力偶合器作为从站,完成其控制系统与主站的通讯;另一个用于TP070显示器接口,作为本机系统的显示界面[2]。
4 控制程序
控制程序采用主程序、子程序以及中断程序来编写。主程序完成电机、油泵启停等开关量逻辑控制以及温度、压力等主要模拟量监控和报警;子程序SBRO~SBR11传递工作油温控制参数、润滑油温度、压力、压差控制参数;主程序允许定时中断,进入中断服务程序执行含有PID指令的一段程序,对输出轴进行调速控制。
1)主程序
为了保证液力偶合器正常工作,控制系统必须满足严格的的启动、运行和停止条件。既开机顺序为先启动辅助润滑油泵、开冷却水闸,再启动主电机;停机顺序为先停主电机,再停润滑油泵、关闭冷却水闸;运行工作条件为勺管调速构控制功能正常、油温和油压监测系统正常等[3]。 系统主程序流程如图4.1所示。
2)数字PID控制程序
根据液力偶合器的结构特性可知,机械-液力传动系统惯性较大,输出轴速度调节响应有一定的滞后性。正可运用S7-200PLC中的PID控制子程序,与EM235模拟量输入输出模块一起,提高系统的速度调节响应,改善系统的动态特性[4]。
PID控制器的设计是以连续的PID控制规律为基础的,sp(t)是依据锅炉水位确定的输出轴给定速度值, pv(t)为输出轴速度反馈量,e(t)=sp(t)-pv(t)为误差信号, c(t)为系统的输出量。PID控制算法的输出量如下式所示:
Mintal为输出的初始值,Kc为系统比例系数, Ti, Td为PID的积分、微分时间。
输出轴转速的PID闭环控制系统如图4.2所示,将上式数字化,写成离散形式的PID方程,则程序中实际的PID算式如下式所示:
上式中共包含九个参数,存储在36字节的PID回路参数表内,见表4.1。CPU226提供的PID回路指令, 其操作就取决于这九个参数,必须指定内存区内该参数表的首地址。在应用于PID指令之前,需要将参数转换为标准化的浮点数表示形式,转换的第一步是把实际值从16位整数数值转换为浮点数数值,第二步是将转换后的浮点数再转换成位于0.0~1.0之间的标准化数值。
表4.1 PID回路参数表
由于机械-液力传动系统惯性较大,本系统仅采用比例和积分控制,100毫秒中断一次,做PID计算,通过工程计算初步确定其增益和时间常数为Kc =2.5、Ti =60s、Td=0s、Ts=0.1s,进一步计算后可达到最优控制效果。
5 结论
基于西门子PLC的控制系统,实现了对液力偶合器主要运行参数的实时监控。通常,电厂锅炉配备两台以上的给水泵,结合蒸汽锅炉运行状态的自动监测,可以实现整个机组的在线监控、故障诊断和报警等,西门子PLC具有丰富的网络构建功能,因此液力偶合器控制系统尚有很大的可扩展性。
本文作者创新点在于:利用PLC的PID调节功能取代了原来电动执行器必需配备的勺管伺服放大器,加快了系统的响应速度