南宁智能人脸识别系统定制 停车场报送系统 速度快
价格:面议
人脸识别是一个富有挑战性的前沿课题,识别系统需具备实时性和可靠性。由于人脸识别较为复杂,综合多种方法是人脸识别的研究方向,如何率地识别更是高速发展的社会的迫切需求。本项目主要使用图像处理的算法,基于STM32F407单片机控制摄像头采集数据,采用模板匹配法实现人脸识别。
人脸识别技术是模式识别、图像处理、计算机视觉和认知科学等领域的一个极富挑战性的交叉课题,是近年来的一个研究热点。现有人脸识别算法众多,应用范围和特点各异,研究者希望通过一个算法测试系统快速了解现有算法,对比和研究新的算法;开发商希望通过一个测试平台选择一个适合自己应用领域的人脸识别算法开发商用产品。本致力于解决上述问题,开发了人脸识别算法综合测试系统,该系统集成了多种人脸识别算法并提供了添加新算法的开放接口。整个系统在VC++6.0和OpenCV3.1开发环境下实现。系统特点: A.集成了2种人脸检测算法,3种人脸识别算法,并为添加新算法提供了开放接口。 B.为系统设计的人脸信息数据库管理系统采用文档结构具有易于查询易于追加方便更新的特点,具有推广价值。 C.基于该系统设计了脆弱水印保护人脸图像数据库和保存额外信息方案,提高了安全性,丰富了人脸图像信息内容。 该研究在综合测试系统的基础上实现网络化人脸识别系统,为商业应用提供网络人脸识别原型系统。该系统中,网络传输模块只传输有用的人脸信息,与传统的系统传输压缩视频相比,大大的降低了数据传输量。 该研究以人脸识别算法综合测试系统为实验平台,以网络人脸识别系统为原型,提出了级联多模态并行计算人脸识别体系结构,该体系结构有良好的识别效率和鲁棒性。理想情况下该体系结构可以达到100%的识别率,而且良好的可扩展性使得识别速度几乎不受人脸信息数据库规模限制。
近年来,伴随着网络技术及计算机技术的飞速发展,人们对信息的安全性、隐蔽性的要求越来越高,因此人体身份识别认证的需求也就越来越高。人脸识别是基于生物特征识别技术的身份认证中主要的方法之一,而且是人体身份识别方法中简单、方便的方法之一,也就受到越来越多的关注与研究。广义的人脸识别包括人脸检测、人脸表征和人脸识别。本文从人脸检测和人脸识别出发,针对其相关的工作展开讨论。首先,针对人脸图像的特点,讨论了人脸图像预处理和特征提取的相关知识,具体包括:人脸图像的灰度化、直方图以及直方图均衡化、边缘检测和小波分解。然后,详细介绍了Adaboost人脸检测算法和基于隐马尔可夫模型的人脸识别算法的基本原理及特点,并针对传统的Adaboost人脸检测算法,提出了一种增强型的Adaboost人脸检测算法,并对两种算法进行了比较。实验结果表明,本文提出的算法性能更好,人脸正确检测率和识别率都有了一定的提高。后,将本文提出的增强型Adaboost人脸检测算法与HMM人脸识别算法结合起来,设计并实现了一个人脸识别软件系统,并结合已有的人脸数据库和实验新建采集的人脸图像,对系统进行了实验仿真,
通过对人脸识别技术与其他身份识别技术的对比,分析不同技术之间的优缺点,进而提出基于人脸识别的图书馆门禁系统优于传统图书馆门禁系统,同时对系统的组成结构、工作原理、算法代码编写流程以及系统测试等进行了研究。传统图书馆门禁系统存在三个关键问题:存在不安全隐患、存在5%左右的误识率和识别速度慢。针对上述三个关键问题分别提出了解决方案。由于人脸识别技术有着“人脸无法替代”、非侵犯性的特性,因此将人脸识别技术应用于图书馆门禁系统,排除了传统图书馆门禁系统存在安全隐患的现象;从系统设备选型、网络设计、软件设计方面提升了人脸识别终端机对人脸的识别率;由于人脸的识别时间小于1s,从根本上解决了图书馆门禁系统识别速度慢的问题。