产品规格:
产品数量:
包装说明:
关 键 词:铜梁测温人脸设备
行 业:机械 商业专用设备 出入口机
发布时间:2022-08-30
近年来,伴随着网络技术及计算机技术的飞速发展,人们对信息的安全性、隐蔽性的要求越来越高,因此人体身份识别认证的需求也就越来越高。人脸识别是基于生物特征识别技术的身份认证中主要的方法之一,而且是人体身份识别方法中简单、方便的方法之一,也就受到越来越多的关注与研究。广义的人脸识别包括人脸检测、人脸表征和人脸识别。本文从人脸检测和人脸识别出发,针对其相关的工作展开讨论。先,针对人脸图像的特点,讨论了人脸图像预处理和特征提取的相关知识,具体包括:人脸图像的灰度化、直方图以及直方图均衡化、边缘检测和小波分解。然后,详细介绍了Adaboost人脸检测算法和基于隐马尔可夫模型的人脸识别算法的基本原理及特点,并针对传统的Adaboost人脸检测算法,提出了一种增强型的Adaboost人脸检测算法,并对两种算法进行了比较。实验结果表明,本文提出的算法性能更好,人脸正确检测率和识别率都有了一定的提高。后,将本文提出的增强型Adaboost人脸检测算法与HMM人脸识别算法结合起来,设计并实现了一个人脸识别软件系统,并结合已有的人脸数据库和实验新建采集的人脸图像,对系统进行了实验仿真,
人脸图像预处理
人脸图像预处理:对于人脸的图像预处理是基于人脸检测结果,对图像进行处理并终服务于特征提取的过程。系统获取的原始图像由于受到各种条件的限制和随机 干扰,往往不能直接使用,必须在图像处理的早期阶段对它进行灰度校正、噪声过滤等图像预处理。对于人脸图像而言,其预处理过程主要包括人脸图像的光线补 偿、灰度变换、直方图均衡化、归一化、几何校正、滤波以及锐化等。
本文对人脸识别技术的发展和人脸识别系统在铁路车站安检区域的应用进行了分析和研究。针对火车站存在密度大、难度大、安检时间短和光线环境复杂等较为的行业应用特点,提出一种应用于铁路车站的人脸识别系统解决方案,并在京沪高速铁路试点。该系统具有响应时间短、人脸采集率高和比对识别速度快等特点,在提高人脸识别率的同时降低误识率和漏识率。
人脸识别(Face Recognition)技术是一项非常重要的生物特征识别技术,同其它的生物特征识别技术(如指纹识别、步态识别和虹膜识别)相比,人脸识别具有简便性、非接触性和不侵犯个人隐私等特的优点,这使得在近年来,人脸识别受到越来越多研究者的关注,特别是主成分分析方法(Principle Component Analysis, PCA)和线性鉴别方法(Linear Discriminant Analysis, LDA)在人脸识别中的应用之后,人脸识别在日常生活应用领域不断扩大,如出入境检查、门禁系统、安检以及机场的安检等方面。