淮阴人脸识别系统电话 停车场数据上传 速度快
价格:面议
一种人脸识别系统,其特征在于,包括:人脸信息采集子系统,负载均衡子系统,以及至少一个人脸识别子系统,其中,所述人脸信息采集子系统,用于获取人脸信息,并向所述负载均衡子系统发送人脸识别请求,其中,所述人脸识别请求中至少携带有所述人脸信息;所述负载均衡子系统,用于基于各个人脸识别子系统分别对应的平均负载值,从所有人脸识别子系统中,选取一个所述人脸识别子系统,并将所述人脸识别请求转发至选取的所述人脸识别子系统;所述人脸识别子系统,用于从自身管辖的所有人脸识别服务器中,选取预设数目的人脸识别服务器分别对所述人脸识别请求中携带的人脸信息进行处理,获取每一台人脸识别服务器在处理所述人脸信息后生成的处理结果,并基于各个处理结果,获取所述人脸信息对应的人脸识别结果。
人脸识别(Face Recognition)技术是一项非常重要的生物特征识别技术,同其它的生物特征识别技术(如指纹识别、步态识别和虹膜识别)相比,人脸识别具有简便性、非接触性和不侵犯个人隐私等特的优点,这使得在近年来,人脸识别受到越来越多研究者的关注,特别是主成分分析方法(Principle Component Analysis, PCA)和线性鉴别方法(Linear Discriminant Analysis, LDA)在人脸识别中的应用之后,人脸识别在日常生活应用领域不断扩大,如出入境检查、门禁系统、安检以及机场的安检等方面。虽然目前人脸识别系统已经取得了较好的识别效果,但依然受到光照、姿态、表情变化、发型、有无眼镜和年龄老化等多方面因素的影响。因此,本文对人脸识别技术的研究,具有重要的理论研究意义和实际应用价值。本文主要针对人脸识别中特征的选取和分类的问题,提出了一种线性鉴别方法(LDA)和基于稀疏表征的分类(Sparse Representation-based Classification, SRC)相结合的全局和局部表征集成方法,该方法利用线性鉴别分析方法在子空间上的... 更多
本文对人脸识别技术的发展和人脸识别系统在铁路车站安检区域的应用进行了分析和研究。针对火车站存在密度大、难度大、安检时间短和光线环境复杂等较为的行业应用特点,提出一种应用于铁路车站的人脸识别系统解决方案,并在京沪高速铁路试点。该系统具有响应时间短、人脸采集率高和比对识别速度快等特点,在提高人脸识别率的同时降低误识率和漏识率。
人脸识别系统是人脸识别技术在生物特征识别领域的应用,旨在将人脸图像作为一种可以标识的生物特征进行编码与鉴别,目前较为广泛的应用于安防领域。由于云台摄像头的可控旋转特性,基于云台摄像头的人脸识别系统可以应用于公共区域的跟踪或教室的等。
本文基于Labview图形开发环境构建了实时图像采集、人脸检测与识别、云台摄像头跟踪一体化的人脸识别系统