D25-50*4D25-50*5D25-50*6多级泵泵及底泵及电机
价格:面议
1、单级泵是指只有一只叶轮的泵,高扬程只有125米;
2、多级泵是指有两只或两只以上叶轮的泵,能分段地多级次地吸水和压水,从而将水扬到很高的位置,扬程可根据需要而增减水泵叶轮的级数;多级泵在单级泵扬程需要必须配两级电机的情况下,可以通过增加叶轮个数来配用电机,从而可以提高泵使用寿命和降低机组噪音.
3、在泵实际需要扬程小于125米时,可根据泵房面积、泵价格(多级泵一般比单级泵价格偏高)、等因素综合考虑该选用单级泵还是多级泵。
一种用途非常广泛的水处理工具。与普通的抽水机不同的是它工作在水下,而抽水机大多工作在地面上。
水泵开泵前,吸入管和泵内必须充满液体。开泵后,叶轮高速旋转,其中的液体随着叶片一起旋转,在离心力的作用下,飞离叶轮向外射出,射出的液体在泵壳扩散室内速度逐渐变慢,压力逐渐增加,然后从泵出口,排出管流出。此时,在叶片处由于液体被甩向周围而形成既没有空气又没有液体的真空低压区,液池中的液体在池面大气压的作用下,经吸入管流入泵内,液体就是这样连续不断地从液池中被抽吸上来又连续不断地从排出管流出。
多级泵轴体缝隙对泵的制约
多级泵全部安装完毕后,由于各级叶轮都压在各导流壳的上端面上,传动轴处于轴向受压状态,在这种情况下,泵是无法起动的。因此,必须用调节螺母上提传动轴,使叶轮离开导流壳上端面一定的距离,这个过程称为“调节轴向间隙”。合理的轴向间隙,是多级泵良好运转的重要条件,因此,在使用调节螺母调整轴向间隙时,其正确的调节步骤为:盘车、零点确定、调节量计算、分次调节。
(1)盘车。多级泵机组安装完后,在电动机轴上安上勾头键,此时应进行盘车,即是用手转动电动机传动盘或用手转动传动轴,以此消除由于安装不当在传动轴之间存在的间隙。当感到阻力大,或盘不动时,停止盘车,装上调节螺母。
(2)“起始点”(零点)的确定。正确计算调节螺母转动圈数的关键在于找准起始点。一般在逐渐旋拧调节螺母、上提叶轮的同时,用手转动传动轴,则传动轴由转不动到转动沉重,再开始变为转动较轻,或能转动时阻力从很大突然变得很小,这说明叶轮刚和导流壳脱离。这时调节螺母的位置点就叫做轴向间隙调节的起始点,它是计算轴向间隙的起点(或称零点)。
(3)调节量的计算。从“起始点”开始上提叶轮,所提升的距离,也就是从“起始点”开始转动的圈数叫做调节量。它的大小和传动轴安装长短、材质的不同以及水中的含沙量和调节螺母螺距有关。
(4)调整。轴向间隙调整须分两次进行,才能保证起动良好。在初调起动后,应运行一段时间(一般为0.5~2小时),并密切注意观察机组振动、噪音、转动情况,测试电流、电压、流量、扬程是否正常,若无异常情况,应停车再次进行调节。这时,松开调节螺母使叶轮重新座落在导流壳上端面上,以消除轴的伸缩影响。然后再按初调时终的调节量,上提叶轮投入正常工作,即终调。
轴向间隙调节注意事项在调节轴向间隙时,应注意以下事项:(1)经初调后,用双手向逆时针方向转动电动机传动盘时应不太费劲,即传动盘转动比较灵活。如果转不动,不是调节量不当,就是安装有问题,应当细致检查,找出原因及时处理。(2)如果初调试车时,电流超过电动机额定值太多,表示间隙调得过小,应继续调大一些,或放松调节螺母重新调节。
面积比优化设计仿真Ato在65m2,70m2内取某一具体值进行面积比优化。保持Are为初始设计值不变,考察Ato=70m2时不同的面积比对COP的影响,如所示。由a可知,COP和Qc随面积比的变化趋势相反,在面积比为1左右时,系统获得大的Qc,而对应的COP值很小;面积比在1.5左右时,由b和c可知,在优化面积比范围内,两器内水的流速及其压降均满足设计要求(pew超出了约束范围,但幅度不大)。b和c中水流速和阻力在面积比接近1时的突然升高,是由于换热器型号的变化引起的,进而引起了管程长度的突变。
回热器与两器面积配比优化设计仿真根据上述仿真结果,本文所研究的矿用卧式多级泵系统总面积优化区间为65m2,70m2、两器面积比优化区间为1.1,1.6.分析表明,回热器面积变化对压缩机排气温度影响很大,也影响系统COP的大小,因此,还应研究回热器与两器面积配比问题。为两器不同面积比下回热器面积变化对系统性能影响仿真结果。由a可知,在Are不变时,面积比越小,Qc越大;在同一面积比下,Are越大,Qc越小;在众多工况点上,满足设计供热量要求的有工况14.但由b可知,在工况14中,工况4的排气温度已超过系统排气温度限值;由c可知,在工况13中,工况3具有高的COP.于是,取Are=7.0m2,面积比为1.4.
按照设计条件所完成的高温卧式多级泵单一部件(如压缩机、两器、回热器、节流机构等)的结构设计在组成系统后,高温卧式多级泵系统的制热量、压缩机吸气量、中间吸气温度、冷凝器和蒸发器水侧阻力等主要性能参数与设计值相比都发生了较大变化,即单一部件的初始设计结果之间存在不匹配性。在压缩机型号已确定的前提下,优化设计换热器的换热面积是解决该问题的有效途径。
高温矿用卧式多级泵COP随两器总面积的增加而增加,但COP对总面积的相对增加幅度较小,即通过增加换热器总面积的方法来提高系统COP的意义不大,反而增加了设备的造价。在两器总面积优化过程中,系统设计供热量是一关键性约束参数,根据该参数即可确定总面积合理取值区间,在此基础上再考察其他约束条件的合理性。
们对多级离心泵的故障诊断研究虽然已经做了大量的上作,在工程实践巾也得到了一定的应用,但是也暴露出一些尚需解决和进一步研究的问题。
1、在理论分析和应用研究巾,为了便析与处理,在多数情况下都对多级离心泵进行了一些简单化处理,如假设被分析的信号具有线性、平稳性和小相位特征等,但在实际的工程用中常常会忽略信号中的一些重要特征,对于上作在较为理想工况条件下的简单的泵来讲分析结果尚可,误差不足很大,但对于精密程度高、工作环境复杂的多级离心泵,则诊断结果常常差强人意。
2、泵类设备在工作过程中存在着多种振动激励源,既有多级离心泵本身旋转运动的振源,也有原动机(如电机、柴油机等)的振动激励,而且当泵出现故障时,其部件内部还存在冲击作用,同时水流也会产生一定的冲击作用。这么多振源的振动混合在一起势必会相瓦影响,而且故障信号往往会被淹没在背景噪声和干扰之中,这都给多级离心泵的放障诊断带来了很大难度,现有的信号分析方法在多激励源的振动信号分离以及低信噪比振动信号的特征提取方面并未取得突破性进展,仍需要做更深一步的研究。
3、目前人们对多级离心泵进行战障分类主要还是采用基于数据的机器学习方式,这种方式的特点就是需要大量的样本数据,但当样本数据难以获得的时候,这种靠法就显爪出了其的限性。凶此需要研究一种具有更高泛化推广能力的小样本故障模式分类方法,使其能够利用有限的数据样本来获得更好的诊断效果。