产品规格:
产品数量:
包装说明:
关 键 词:提供stata解决方案和培训
行 业:IT 软件 VPN软件
发布时间:2021-12-26
科学软件网专注提供科研软件。截止目前,共代理千余款,软件涵盖各个学科。除了软件,科学软件网还提供课程,包含34款软件,66门课程。热门软件有:spss,stata,gams,sas,minitab,matlab,mathematica,lingo,hydrus,gms,pscad,mplus,tableau,eviews,nvivo,gtap,sequncher,simca等等。
We are excited to introduce you to the new features in Stata 16. Below, we list highlights of the release. In what follows, we tell you a little more about the first 13 of them. We introduce each feature using words that you might also use as you introduce them to existing and potential Stata users.
The majority of these features will be exciting to researchers in all disciplines. Where appropriate, we will highlight which disciplines will be most interested or provide advice about how different groups of users will relate to the feature. We
Advantages and disadvantages of Bayesian analysis
Bayesian analysis is a powerful analytical tool for statistical modeling, interpretation of results,
and prediction of data. It can be used when there are no standard frequentist methods available or
the existing frequentist methods fail. However, one should be aware of both the advantages and
disadvantages of Bayesian analysis before applying it to a specific problem.
The universality of the Bayesian approach is probably its main methodological advantage to the
traditional frequentist approach. Bayesian inference is based on a single rule of probability, the Bayes
rule, which is applied to all parametric models. This makes the Bayesian approach universal and
greatly facilitates its application and interpretation. The frequentist approach, however, relies on a
variety of estimation methods designed for specific statistical problems and models. Often, inferential
methods designed for one class of problems cannot be applied to another class of models.
How to do Bayesian analysis
Bayesian analysis starts with the specification of a posterior model. The posterior model describes
the probability distribution of all model parameters conditional on the observed data and some prior
knowledge. The posterior distribution has two components: a likelihood, which includes information
about model parameters based on the observed data, and a prior, which includes prior information
(before observing the data) about model parameters. The likelihood and prior models are combined
using the Bayes rule to produce the posterior distribution
Stata’s reporting features allow you to create Word, PDF, Excel, and HTML documents that incorporate Stata results and graphs with formatted text and tables. Regardless of the type of document you create, you can rely on Stata’s integrated versioning features to ensure that your reports are reproducible.
Want dynamic reports that are updated as your data change? Stata’s reporting features make this easy too. Rerun the command or do-file that created your report with the updated dataset, and all Stata results in the report are updated automatically.
Stata 16 has new and improved reporting features, of course, but as importantly, all of Stata's reporting features are now documented in a new Reporting Reference Manual. The manual includes many new examples that demonstrate workflows and provide guidance on customizing the Word, PDF, Excel, and HTML documents you create using Stata.
科学软件网的客户涵盖产品涵盖教育、、交通、通信、金融、保险、电力等行业,并且为诸如北京大学、清华大学、中国大学、中科院、农科院、社科院、环科院、国家、交通部、南方电网、国家电网、许继、南瑞等国内大型企事业单位、部委和科研机构长期提供相关产品。我们的品质,值得您信赖。