长春厂家供应ZF装载机变速箱报价及图片 装载机齿轮箱
价格:29800.00起
批发销售工程机械配件,龙工30装载机变速箱和临工953装载机变速箱在正常工作中由于齿轮的搅动油液会产生少量的气泡,为了防止气泡越积越多,产生气蚀现象, 因此,平时保养要采用适当的变速箱用油。
以液体为工作介质的一种非刚性扭矩变换器,是液力传动的型式之图为液力变矩器,它有一个密闭工作腔,液体在腔内循环流动,其中泵轮、涡轮和导轮分别与输入轴、输出轴和壳体相联。动力机(内燃机、电动机等)带动输入轴旋转时,液体从离心式泵轮流出,顺次经过涡轮、导轮再返回泵轮,周而复始地循环流动。泵轮将输入轴的机械能传递给液体。高速液体推动涡轮旋转,将能量传给输出轴。液力变矩器靠液体与叶片相互作用产生动量矩的变化来传递扭矩。液力变矩器不同于液力耦合器的主要特征是它具有固定的导轮。导轮对液体的导流作用使液力变矩器的输出扭矩可高于或低于输入扭矩,因而称为变矩器。输出扭矩与输入扭矩的比值称变矩系数,输出转速为零时的零速变矩系数通常约2变矩系数随输出转速的上升而下降。液力变矩器的输入轴与输出轴间靠液体联系,工作构件间没有刚性联接。液力变矩器的特点是:能冲击和振动,过载保护性能和起动性能好;输出轴的转速可大于或小于输入轴的转速,两轴的转速差随传递扭矩的大小而不同;有良好的自动变速性能,载荷时输出转速自动下降,反之自动上升;保证动力机有稳定的工作区,载荷的瞬态变化基本不会反映到动力机上。液力变矩器在额定工况附近效率较高,率为85%~92%。叶轮是液力变矩器的核心。它的型式和布置位置以及叶片的形状,对变矩器的性能有决定作用。有的液力变矩器有两个以上的涡轮、导轮或泵轮,借以获得不同的性能。常见的是正转(输出轴和输入轴转向一致)、单级(只有一个涡轮)液力变矩器。兼有变矩器和耦合器性能特点的称为综合式液力变矩器,例如导轮可以固定、也可以随泵轮一起转动的液力变矩器。为使液力变矩器正常工作,避免产生气蚀和保证散热,需要有一定供油压力的供油系统和冷却系统。
节变速器选型及基本参数的确定变速器用于转变发动机曲轴的转矩及转速,以适应汽车在起步,加速,行驶以及克服各种道路障碍等不同行驶条件下对驱动车轮牵引力及车速的不同要求的需要。为保证变速器具有良好的工作性能,对变速器应提出如下设计要求。
变速器的档位数和传动比,使之与发动机参数优化匹配,以保证汽车具有良好的动力性与经济性,设置空档以保证汽车在必要时能将发动机与传动系长时间分离,设置倒档使汽车可以倒退行驶,操纵简单,方便,迅速,省力,传动效率高,工作平稳,无噪声。
体小,质轻,承载能力强,工作可靠,制造容易,成本低廉,维修方便,使用寿命长,零件标准化,部件通用化及总成系列化等设计要求,遵守有关标准规定,需要时应设置动力输出装置。1.1 变速器选型有级变速器与无级的相比,其结构简单,造价低廉,因此在各种类型的汽车上均得到了广泛的应用。其中两轴式和三轴式变速器得到了广泛的应用。
且,二轴同心。将,二轴直接连接起来传递转矩则称为直接档。此时,齿轮,轴承及中间轴均不承载,而,二轴也仅传递转矩.因此,直接档的传动效率高,磨损及噪声也小,这是三轴式变速器的主要优点。其他前进档需依次经过两对齿轮传递转矩。因此,在齿轮中心距(影响变速器尺寸的重要参数)较小的情况下仍然可以获得大的一档传动比,这是三轴式变速器的另一优点。其缺点是:除直接档外其他各档的传动效率有所降低。三轴式变速器的其轴的常啮合齿轮与第二轴的各档齿轮分别与中间轴的相应齿轮相啮合。
两轴式变速器与三轴式变速器相比,其结构简单,紧凑且除外其他各档的传动效率高,噪声低。轿车多采用前置发动机前轮驱动的布置,因为这种布置使汽车的动力——传动系统紧凑,操纵性好且可使汽车质量减少6%~l0%。两轴式变速器则方便于这种布置且使转动系的结构简单。
发动机前置后轮驱动的轿车采用中间轴式变速器,为缩短传动轴长度,可将变速器后端加长,如图3-2A,B所示。伸长后的第二轴有时装在三个支承上,其后一个支承位于加长的附加壳体上。如果在附加壳体内,布置倒挡传动齿轮和换挡机构,还能减少变速器主体部分的外形尺寸。
变速器用图3-3C所示的多支承结构方案,能提高轴的刚度。这时,如用在轴平面上可分开的壳体,就能较好地解决轴和齿轮等零部件装配困难的问题。图3-3C所示方案的高挡从动齿轮处于悬臂状态,同时一挡和倒挡齿轮布置在变速器壳体的中间跨距里,而中间挡的同步器布置在中间轴上是这个方案的特点。
与前进挡位比较,倒挡使用率不高,而且都是在停车状态下实现换倒挡,故多数方案采用直齿滑动齿轮方式换倒挡。为实现倒挡传动,有些方案利用在中间轴和第二轴上的齿轮传动路线中,加入一个中间传动齿轮的方案,见图3-1AC和图3-2A,B等;也有利用两个联体齿轮方案的,见图3-2C和图3-3A,B等。前者虽然结构简单,但是中间传动齿轮的轮齿,是在不利的正,负交替对称变化的弯曲应力状态下工作,而后者是在较为有利的单向循环弯曲应力状态下工作,并使倒挡传动比略有增加。
图3-5为常见的倒挡布置方案。图3-5B所示方案的优点是换倒挡时利用了中间轴上的一挡齿轮,因而缩短了中间轴的长度。但换挡时有两对齿轮同时进入啮合,使换挡困难。图3-5C所示方案能获得较大的倒挡传动比,缺点是换挡程序不合理。图3-5D所示方案针对前者的缺点做了修改,因而取代了图3-5C所示方案。图3-5E所示方案是将中间轴上的倒挡齿轮做成一体,将其齿宽加长。图3-5F所示方案适用于全部齿轮副均为常啮合齿轮,换挡更为轻便。为了充分利用空间,缩短变速器轴向长度,有的货车倒挡传动采用图3-5G所示方案。其缺点是倒挡须各用一根变速器拨叉轴,致使变速器上盖中的操纵机构复杂一些。
因为变速器在一挡和倒挡工作时有较大的力,所以无论是两轴式变速器还是中间轴式变速器的低档与倒挡,都应当布置在在靠近轴的支承处,以减少轴的变形,保证齿轮重合度下降不多,然后按照从低档到高挡顺序布置各挡齿轮,这样做既能使轴有足够大的刚性,又能保证容易装配。倒挡的传动比虽然与一挡的传动比接近,但因为使用倒挡的时间非常短,从这点出发有些方案将一挡布置在靠近轴的支承处,如图3-2B,图3-3B,图3-4A等所示,然后再布置倒挡。此时在倒挡工作时,齿轮磨损与噪声在短时间内略有增加,与此同时在一挡工作时齿轮的磨损与噪声有所减少。倒挡设置在变速器的左侧或右侧在结构上均能实现,不同之处是挂倒挡时驾驶员移动变速杆的方向改变了。为防止意入倒挡,一般在挂倒挡时设有一个挂倒挡时需克服弹簧所产生的力,用来提醒驾驶员注意。
液力变矩器的特性液力变矩器的特性可用几个外界负荷有关的特性参数或特性曲线来评价。描述液力变矩器的特性参数主要有转数比,泵轮转矩系数,变矩系数,效率和穿透性等。描述液力变矩器的特性曲线主要有外特性曲线,原始特性曲线和输入性曲线等。
液力变矩器的故障检测与维修油温过高油温过高表现为机器工作时油温表超过120°C或用手触摸感觉汤手,主要有以下几种原因:变速器油位过低,冷却系中水位过低,油管及冷却器堵塞或太脏,变矩器在低效率范围内工作时间太长,工作轮的紧固螺钉松动,轴承配合松旷或损坏,综合式液力变矩器因自由轮卡死而闭锁,导轮装配时自由轮机构化机构缺少零件。
若有沉积物应予以,再装上接头和密封泄油管。若触摸冷却器时感到温度很高,应从变矩器壳体内放出少量油液进行检查。若油液内有金属末,说明轴承松旷或损坏,导致工作轮磨损,应对其进行分解,更换轴承,并检查泵轮与泵轮毂紧固螺栓是否松动,若松动应予以紧固。以上检查项目均正常,但油温仍高时,应检查导轮工作是否正常。将发动机油门全开,使液力变矩器处于零速工况,待液力变矩器出口油温上升到一定值后。
先应立即停车,让发动机怠速运转,查看冷却系统有无泄漏,水箱是否加满水,若冷却系正常,则应检查变速器油位是否位于油尺两标记之间。若油位太低,应补充同一牌号的油液,若油位太高,则排油至适当油位。如果油位符合要求,应调整机器,使变矩器在区范围内工作,尽量避免在低效区长时间工作。如果调整机器工作状况后油温仍过高,应检查油管和冷却器的温度,若用手触摸时温度低,说明泄油管或冷却器堵塞或太脏,应将泄油管拆下。液力变矩器油温过高故障的诊断和排除方法如下:出现油温过高时检查是否有沉积物堵塞再将液力变矩器换入液力耦合器工况,以观察油温下降程度。若油温下降速度很慢,则可能是由于自由轮卡死而使导轮闭锁,应拆解液力变矩器进行检查。
行星式动力换档变速箱中有很多行星排,换档动作主要依靠制动器制动各行星排的齿圈来实现的。只采用少数离合器,用来接合太阳轮、行星架、内齿圈中的两件,太阳轮啮合的周围有行星轮,行星轮沿着自己的轴线做自转的同时,也围绕太阳轮做公转,行星轮又与行星架相连,行星轮带动行星架做转动[7],换挡时通过制动各行星排的齿圈来改变各个行星排的传动比,以获得相应的档位。