80R-60 80R-60A 80R-60B热水泵侧盖大支架 高温泵
价格:9256.00起
产品规格:
产品数量:
包装说明:
关 键 词:80R-60,80R-60A,80R-60B热水泵侧盖大支架
行 业:能源 泵 离心泵
发布时间:2024-09-20
液体粘度的影响液体粘度越大,流速越低,到达高压区的气泡越少,气泡破裂发生的冲击波强度越小,在同一时间,流体粘度越大,冲击波衰减越大,从而因此,流体粘度越低,气蚀破坏越严重,泵的气蚀损坏主要反映在过流部件材料的损坏上,从而因此,过流部件的材质特性也可能会在一定程度上影响离心泵的空化,用抗汽蚀性好的原材料出产过流部件是环比离心泵汽蚀效果的有效措施,(1)材料硬度以AISI304叶轮为例,气蚀将导致叶轮材料的加工硬化和相变诱发的马氏体钢,这一种变化相反将预防材料的进一步空化,但是,加工硬化和相变诱发马氏体钢的抗气蚀性主要取决于叶轮材料的硬度,(2)加工硬化和抗疲劳性材料的加工硬化指数越高,抗疲劳性越好,材料的抗气蚀性越好
2.离心泵系统的压头曲线,工程和技工必须对工艺流程和泵设备将在这其中运行的系统有清晰的概念,首先,应实施系统的初步研发,包含设备布局图和管道、仪器系统图(或另外适当类型的图)。以及系统中各类设备和部件的高度(包含阀门和另外管道部件的高度)这会引发系统水头损失工程技师将会使用这一些图表来计算泵系统的终管道尺寸和扬程要求后同一个必须设想的因素是系统未来变化的极小的概率性当系统的未来变化能够准确预测时在泵的打造进程中应当着想这一些情况人们可以设想在工作范围开始后立刻使用直径更大的叶轮或大中型泵而非选择合适的泵在工作区域的点工作另外必须设想更大直径的叶轮以满足未来更高压头的要求相对于同一个项目来说成本是需要设想的一般因素从此大致不用要为将来的操作选择过大的泵在泵的选择流程中必须谨记泵应当在现有系统中有效靠谱地运行
热水泵变频调速应用的注意事项
变频调速在泵与风机的节能方面应用广泛,但在实际应用中往往由于对影响其节能效果的因素考虑不周,导致选择与使用存在着较大的盲目性,影响其节能效益的发挥。以水泵为例,针对影响其调速范围、节能效果的一些主要因素,进行了对症分析和探讨,在此基础上指出了变频调速的适用范围。
1 变频调速与水泵节能
水泵节能离不开工况点的合理调节。其调节方式不外乎以下两种:管路特性曲线的调节,如关阀调节;水泵特性曲线的调节,如水泵调速、叶轮切削等。在节能效果方面,改变水泵性能曲线的方法,比改变管路特性曲线要显著得多[1]。因此,改变水泵性能曲线成为水泵节能的主要方式。而变频调速在改变水泵性能曲线和自动控制方面优势明显,因而应用广泛。但同时应该引起注意的是,影响变频调速节能效果的因素很多,如果盲目选用,很可能事与愿违。
2 影响变频调速范围的因素
水泵调速一般是减速问题。当采用变频调速时,原来按工频状态设计的泵与电机的运行参数均发生了较大的变化,另外如管路特性曲线、与调速泵并列运行的定速泵等因素,都会对调速的范围产生一定影响。超范围调速则难以实现节能的目的。因此,变频调速不可能无限制调速。一般认为,变频调速不宜低于额定转速50%,好处于75%~100%,并应结合实际经计算确定。
2.1 水泵工艺特点对调速范围的影响
理论上,水泵调速区为通过工频区左右端点的两条相似工况抛物线的中间区域OA1A2(见图1)。实际上,当水泵转速过小时,泵的效率将急剧下降,受此影响,水泵调速区萎缩为PA1A2[2](显然,若运行工况点已超出该区域,则不宜采用调速来节能了。)图中H0B为管路特性曲线,则CB段成为调速运行的区间。为简化计算,认为C点位于曲线OA1上,因此,C点和A1点的效率在理论上是相等的。C点就成为小转速时水泵性能曲线区的左端点。
因此,小转速可这样求得:
由于C点和A1点工况相似,根据比例律有:
(QC/Q1)2=HC/H1
C点在曲线H=H0+S•Q2上有:
HC=H0+S•QC2
其中,HC、QC为未知数,解方程得:
HC=H1×H0/(H1-S•Q12)
QC=Q1×[H0/(H1-S•Q12)]1/2
根据比例律有:
nmin=n0×[H0/(H1-S•Q12)]1/2
2.2 定速泵对调速范围的影响
实践中,供水系统往往是多台水泵并联供水。由于投资昂贵,不可能将所有水泵全部调速,所以一般采用调速泵、定速泵混合供水。在这样的系统中,应注意确保调速泵与定速泵都能在段运行,并实现系统优。此时,定速泵就对与之并列运行的调速泵的调速范围产生了较大的影响[2]。主要分以下两种情况:
2.2.1
同型号水泵一调一定并列运行时,虽然调度灵活,但由于无法兼顾调速泵与定速泵的工作段,因此,此种情况下调速运行的范围是很小的。
2.2.2
不同型号水泵一调一定并列运行时,若能达到调速泵在额定转速时段右端点扬程与定速泵段左端点扬程相等。则可实现大范围的调速运行。但此时调速泵与定速泵不允许互换后并列运行。
2.3 电机效率对调速范围的影响
在工况相似的情况下,一般有N∝n3,因此随着转速的下降,轴功率会急剧下降,但若电机输出功率过度偏移额定功率或者工作频率过度偏移工频,都会使电机效率下降过快,终都影响到整个水泵机组的效率。而且自冷电机连续低速运转时,也会因风量不足影响散热,威胁电机安全运行。
3 管路特性曲线对调速节能效果的影响
虽然改变水泵性能曲线是水泵节能的主要方式,但是在不同的管路特性曲线中,调速节能效果的差别却是十分明显的。为了直观起见,这里采用图2说明。在设计工况相同的3个供水系统里(即大设计工况点均为A点,均需把流量调为QB),水泵型号相同,但管路特性曲线却不相同,分别为:
①H=H1+S1•Q2(H0=H1)
②H=H2+S2•Q2(H0=H2,H1>H2)
③H=S3•Q2(H0=H3=0)
很显然,若采用关阀调节,则3个系统满足流量QB的工况点均为B点,对应的轴功率为NB;若采用调速运行,则3个系统满足流量QB的工况点分别为C,D,E点,其对应的运行转速分别为n1,n2,n3,相应的轴功率分别为NC,ND,NE。由于N∝Q•H,所以各点轴功率满足NB>NC>ND>NE。
可见,在管路特性曲线为H=H0+S•Q2的系统中采用调速节能时,H0越小,节能效果越好。反之,当H0大到一定程度时,受电机效率下降和调速系统本身效率的影响,采用变频调速可能不节能甚至反而增加能源浪费。
4 两种调速供水方式节能效果比较
在供水系统中,变频调速一般采用以下2种供水方式:变频恒压变流量供水和变频变压变流量供水。其中,前者应用得更广泛,而后者技术上更为合理,虽然实施难度更大,但代表着水泵变频调速节能技术的发展方向。
4.1 变频恒压(变流量)供水
所谓恒压供水方式,就是针对离心泵“流量大时扬程低,流量小时扬程高”的特性,通过自控变频系统,无论流量如何变化,都使水泵运行扬程保持不变,即等于设计扬程。若采用关阀调节,当流量由Q2→Q1时,则工况点由A1变为A2,浪费扬程△H=H1-H3=△H1+△H2。若采用变频恒压供水,则自动将转速调至n1,工况点处于B1点(参见图3)。由于变频调速是无级变速,可以实现流量的连续调节,所以,恒压供水工况点始终处于直线H=H2上,在控制方式上,只需在水泵出口设定一个压力控制值,比较简单易行。显然,恒压供水节约了△H1,而没有考虑△H2。因此,它不是经济的供水调节方式,尤其在管路阻力大,管路特性曲线陡曲的情况下,△H2所占的比重更大,其局限性就显而易见。
4.2 变频变压(交流量)供水
变压供水方式控制原理和恒压供水相同,只是压力设置不同。它使水泵扬程不确定,而是沿管路特性曲线移动(参见图3)。当流量由Q2→Q1时,自动将转速调至n2,工况点处于B2点。此时水泵轴功率n2小于恒压供水水泵轴功率N1。变压供水理论上避免了流量减少时扬程的浪费,显然优于恒压供水,但变压供水本质上也是一种恒压,不过将水泵出口压力恒定变成了控制点压力恒定,它一般有2种形式:
4.2.1 由流量Q确定水泵扬程
流量计将测得的水泵流量Q反馈给控制器,控制器根据H=H0+S•Q2确定水泵扬程H,通过调速使H沿设计管路特性曲线移动。
但在生产实践中情况比较复杂。对于单条管路输水系统,是可以得到与之对应的一条管路特性曲线的。而在市政供水管网中,则很难得到一条确定的管路特性曲线。在实践中,只能根据管网实际运行情况,通过尽时能接近实际的假设,计算出近似的管路特性曲线。
4.2.2 由不利点压力Hm确定水泵扬程
即需在管网不利点设置压力远传设备,并向控制室传回信号,控制器据此使水泵按满足不利点压力所需要的扬程运行、由于管网不利点往往距离泵站较远,远传信号显得不太方便,而且,在市政供水系统中,由于管网的调整,用水状况的变化等随机因素的影响,都会使实际不利点和设计不利点发生一些偏差,给变压供水的实施带来困难。
5 结论
①变频调速是一种应用广泛的水泵节能技术,但却具有较为严格的适用条件,不可能简单地应用于任何供水系统,具体采取何种节能措施,应结合实际情况区别对待
②变频调速适用于流量不稳定,变化频繁且幅度较大,经常流量明显偏小以及管路损失占总扬程比例较大的供水系统。
③变频调速个适用于流量较稳定,工况点单一以及静扬程占总扬程比例较大的供水系统。
④变频变压供水优于变频恒压供水。
汽蚀就是当离心泵的实际的吸程大于设定的吸程的时候,部分水因为受到低压作用会出现气化现象。当水到高压的时候,混在液体中的部分气体,迅速液化,产生空间,水会高速打到旋转的叶轮上,叶轮就会出现破损,这就是汽蚀。如果可以降低离心泵的安装高度,能有效避免汽蚀。
离心泵内发生汽蚀的过程
1、离心泵内汽蚀的过程
离心泵运转时,流道里液体的速度和压力都是变化的,当流道中局部区域(通常是叶轮进口边稍后的某处)液体的压力降低到当时温度下的汽化压力时,液体便在该处发生汽化,形成许多汽泡。
汽泡随液体向前流动至压力大于汽化压力的区域时,汽泡内外产生压差,汽泡急剧地缩小以至凝结,凝结过程中,液体质点高速填充空穴,液体质点就像无数小弹头一样,连续打击在金属表面上,在压力很高(局部压力高达50MPa),频率很高的连续打击下,金属表面逐渐因疲劳而破坏。
另外,在所产生的汽泡中还夹杂一些活泼的气体(氧),借助汽泡凝结时所放出的热量(局部温度高达200~300℃)对金属起化学腐蚀作用。在这种机械剥蚀和化学腐蚀的共同作用下,使离心泵过流部件受到破坏的过程就是汽蚀过程。
2、离心泵产生汽蚀的危害
(1)产生振动和噪声
离心泵汽蚀时,汽泡在高压区内连续不断发生突然溃灭,并伴随着强烈的水击,这时会产生频率为600~25000Hz的噪音,泵内可听到劈劈、的爆炸声,同时机组产生振动,机组的振动又将促使更多的空泡发生溃灭,两者相互激励,当频率接近于装置的固有频率时,机组将发生强烈的共振,称为汽蚀共振,这时,机组不应工作。
(2)过流部件的汽蚀破坏
离心泵长时间在汽蚀条件下工作时,在连续强烈的高频(600~25000Hz)冲击下(压力达50MPa),金属表面出现麻点,严重时金属晶粒松动并脱落,呈现出蜂窝状、海绵状、沟槽状、鱼鳞状甚至穿孔、断裂。
实践,汽蚀破坏的部位,正是汽泡消失之处,所以常常在叶轮出口和压水室进口部位发现破坏痕迹。轴流泵和斜流泵,通常在叶片背面和外周出现破坏(叶片与叶轮室接触的地方,即间隙汽蚀)。
(3)性能下降
离心泵刚发生汽蚀时,对泵性能影响不大,待汽蚀发展到一定程度,由于叶轮和液体的能量交换受到干扰和破坏,大量的汽泡堵塞流道,泵的流量、扬程、效率 、轴功率曲线就会显著下降。
低比转数泵的特性急速下降;高比转数泵的特性下降较为缓慢,只是到了某一个流量后,性能才急剧下降;轴流泵无显著下降阶段,多级泵汽蚀只限于级,因而性能下降较单级泵为小
减少离心泵汽蚀的措施:
1、提高离心泵本身的抗汽蚀性能
(1)叶轮进口直径
(2)叶轮叶片进口宽度
(3)叶轮盖板进口部分曲率半径
(4)叶片进口边适当向吸入方向延伸
(5)叶片进口角
(6)尽量使叶片进口厚度薄
(7)增加叶片的光洁度
2、防止发生汽蚀的措施
(1)减少几何吸上高度Hg(或增加几何倒灌高度)。
(2)减少吸入损失hc(可管径、减少管路长度、弯头等)。
(3)选泵时,注意泵大流量的汽蚀余量,应使装置的汽蚀余量大于泵的汽蚀余量。
(4)在同样的转速和流量下,采用双吸泵(减小进口流速)。
(5)泵汽蚀时,把流量调小或降速运行。
(6)离心泵吸水池对泵汽蚀有重要影响。
(7)对于在苛刻条件下运行,为避免汽蚀破坏,离心泵可使用抗汽蚀材料。
汽蚀现象:
液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。
在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。
水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。
汽蚀余量:
指泵处液体所具有的总水头与液体汽化时的压力头之差,单位用米(水柱)标注,用(NPSH)表示,具体分为如下几类:
1,装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀;
2,泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;
3,临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量;
4,许用汽蚀余量,是确定泵使用条件用的汽蚀余量。
设计中,许用汽蚀余量=1。1~1。5临界汽蚀余量
离心泵运转时,液体压力沿着泵到叶轮而下降,在叶片附近的K点上,液体压力pK低。此后由于叶轮对液体作功,液体压力很快上升。当叶轮叶片附近的压力pK小于液体输送温度下的饱和蒸汽压力pv时,液体就汽化。
同时,使溶解在液体内的气体逸出。它们形成许多汽泡。当汽泡随液体流到叶道内压力较高处时,外面的液体压力高于汽泡内的汽化压力,则汽泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增加(有的可达数百个大气压)。
这样,不仅阻碍液体正常流动,尤为严重的是,如果这些汽泡在叶轮壁面附近溃灭,则液体就像无数个小弹头一样,连续地打击金属表面。其撞击频率很高(有的可达2000~3000Hz),于是金属表面因冲击疲劳而剥裂。如若汽泡内夹杂某种活性气体(如氧气等),它们借助汽泡凝结时放出的热量(局部温度可达200~300℃),还会形成热电偶,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。
上述这种液体汽化、凝结、冲击、形成高压、高温、高频冲击负荷,造成金属材料的机械剥裂与电化学腐蚀破坏的综合现象称为气蚀。
。
所谓气蚀,特指流体在高速流动和压力变化条件下,与流体接触的金属表面上发生洞穴状腐蚀破坏的现象。
在泵类机械中,若进口压力过低,溶解在流体中的气体将会��出,当进口压力降至被输送液体在该温度下对应的饱和蒸汽压时,液体将发生气化,两者所生成的汽泡随液体从向高压区流动,又因压力迅速而急剧冷凝,气泡瞬间溃灭。
周围液体以很大的速度从周围冲向气泡中心,产生频率很高、瞬时压力很大的冲击,使设备表面产生疲劳,发生腐蚀,这就是气蚀现象。
对于输送液体的泵设备,没有气蚀余量这样的说法。对往复式的压缩机,有存气余量或压缩余量之说,所指为活塞在上止点时,活塞顶部与压缩室间存在的那部分容积,因为在上止点时,活塞与气缸盖之间在设计上留存有一定间隙,因此也将此间隙称为存气余隙。
这部分容积对压缩机发挥容积效率不利,但为了防止活塞运行到上止点时冲撞气缸盖,又是必须保留的,所以存气余量不能没有,但应该尽可能少。