


价格:面议
0
联系人:
电话:
地址:
蜗壳优化对离心风机金属叶轮稳定运行的影响
蜗壳是离心风机金属叶轮的重要组成部分。它可以通过导流与扩大压力来提高离心风机的效率。蜗壳入口气流由于受到蜗壳流动不对称的影响,导致分布不均的现象发生。这种分布不均匀的现象会直接堵塞叶轮出口,从而使叶轮发生周期性的加速或减速,进而降低离心风机的工作效率,缩小了离心风机工作的范围,影响了金属叶轮的平稳运行。因此在蜗壳的优化设计过程中必须将蜗壳宽度对流场的影响考虑在内,合理设计外壳的宽度,降低对流场的影响。从而保证金属叶轮的平稳运行。
电机优化对离心风机金属叶轮稳定运行的影响吸油烟机、空调系统等设备空间较小,为了节省空间,一般会使用内藏电动机设备。内藏电动机的长度、头部倾角等在一定程度上影响着风机性能和噪音。对内藏电动机的形状设计不当会增加金属叶轮内部的流动损失,从而导致噪声增大,离心风机性能降低。电动机的轴向长度和气流的排挤率呈正相关的关系。叶轮进口处的流道变窄会使前盘处脱流区域变大,从而导致金属叶轮内部损失增加。因此,在设计电机形状时,应充分考虑电机形状对叶轮内部流动的影响,从而提高金属叶轮的稳定性,确保离心风机的性能。
综上所述,本文通过结构优化对离心风机金属叶轮稳定运行影响进行研究,简要分析了各部件结构优化对离心风机金属叶轮稳定运行的影响。主要从集流器优化对离心风机金属叶轮稳定运行影响、窝壳优化对离心风机金属叶轮稳定运行影响、电机优化对离心风机金属叶轮稳定运行影响,以及叶片形状优化对离心风机金属叶轮稳定运行影响四个方面进行分析,为保证金属叶轮的稳定运行提供技术支持。各部件结构优化对离心风机金属叶轮稳定运行的影响
集流器优化对离心风机金属叶轮稳定运行的影响
集流器的工作原理是通过将气流均匀地送入叶轮进口截面,以达到提高离心风机叶轮的效率以及风机整体性能的目的。集流器的结构形式对气流的流动损失以及金属叶轮的平稳运行都有很大影响,因此对集流器的结构优化是非常重要的。在设计集流器的结构时,青岛离心风机,应确保较大程度地符合金属叶轮附近气流的流动情况,同时还应保证集流器内气流的平稳运行。集流器的类型有很多种,常用的集流器是锥弧形集流器,锥弧形集流器的气流运行一般比较平稳,但是集流器喉部到叶轮进口阶段容易发生边界层分离现象,增加离心风机的损失,导致离心风机效率降低。因此,必须优化集流器结构,通过减小集流器的锥度、增加喉部半径的方式,提高离心风机的效率,保证金属叶轮的平稳运行。
将建立好的离心风机三维模型导入ICEM 软件进行混合网格的划分。其中进出口和叶轮区域采用结构化网格,而蜗壳部分由于其内部结构复杂,尤其是电动机周围结构并非规则模型,故采用适应性较强的非结构化四面体网格,具体网格如图3 所示。综合考虑动静耦合区域对数值模拟预测结果的影响,离心风机多少钱,在进行网格划分时,对边界层进行加密处理,其较低网格质量雅克比[14]在0.3 以上。为了保证数值计算结果的准确性,避免网格误差对其模拟结果造成影响,中压离心风机,对离心风机进行网格无关性验证,如表1 所示。综合考虑计算精度和计算效率可知,当网格数为25 万左右时预测结果较为合理,终确定整个计算域的网格数为2513558。k-ε 模型作为为普遍有效的湍流模型,能够计算大量的各种回流和薄剪切层流动,被广泛应用于各类风机的数值求解计算中。
由于有梯度扩散项,模型k-ε 方程为椭圆形方程,故其特性同其他椭圆形方程,需要边界条件:离心风机出口或对称轴处k / n0和/ n0。但上述边界条件只针对高雷诺数而言,在固体壁面附近,流体粘性应力将取代湍流雷诺应力,并在临近固体壁面的粘性底层占主要作用。而多翼离心风机由于结构尺寸小、相对马赫数低,气体黏性力在流体流动过程中起重要作用,因此,在实际运用过程中,标准k-ε 模型由于未充分考虑粘性力的影响,导致计算模型出现偏差。运用Visual C 将上述修正函数编写为UDF代码,并导入Fluent 内置Calculation module。为符合实际运行状态,柜式离心风机,离心风机进出口边界条件设置为压力入口和压力出口,出口压降与动能成正比,从而避免在进口和出口定义一致的速度分布[15]。后以CFD 计算的定常结果作为初始条件,进行非定常数值计算。