产品规格:
产品数量:
包装说明:
关 键 词:梧州钢板规格
行 业:建材 管材管件 无缝管
发布时间:2021-05-09
随着近年来工程机械市场的持续低迷,工程机械产品的销售量也是逐渐走低。在当今的市场形势下,山推作为全国的履带式推土机制造商也受到了影响。为降低生产成本,增加经济效益,结合推土机的结构及其力学性能,通过不断地分析研究提出了关于Q235B和Q345B材料合理选用的方案。
通过对Q235B和Q345B材料化学成分和力学性能的分析,提出在推土机结构件中可利用Q345B材料代替部分Q235B材料,在满足推土机结构件力学性能的要求下,通过减少使用钢板的厚度,降低使用材料的重量,达到降成本、增效益的作用。
试验方法
(1)试验用材料 根据SD16推土机后桥箱设计结构要求,后桥箱结构中使用了大量的Q235B和Q345B材料, 约占后桥箱总重量的1/3。其中,SD16后桥箱中Q235B钢板的重量为125kg,Q345B钢板的重量为171.6kg。
(2)焊接工艺 焊接工艺要求焊缝强度质量为Q/STB12.606-2000一级。对焊缝进行清渣、修磨处理。具体焊接参数如表4所示。
在焊接工艺中,Q235B和Q345B的焊接参数和工艺要求是一致的。Q235B属于碳素钢材料,Q345B属于低合金结构钢,两种材料都是用连铸坯轧制而成,区别在于合金元素含量,主要体现在含锰量上,其中Q235B的wMn=0.3%~0.8%,Q345B的wMn=1%
连铸过程吸入的外来气体(空气、氩气)进入钢水中后以气泡的形式存在,混入结晶器中的气泡若来不及逸出被凝固坯壳捕捉便会形成铸坯气泡。
过程吸气主要指连铸浇注过程中由于钢包敞开浇注、中间包钢水等造成钢水与空气直接接触或由于钢包下水口与套管间及中间包上下水口滑板间存有缝隙产生负压而吸入空气,终导致钢水二次氧化;这是造成铸坯气泡(氧气泡、氮气泡)缺陷的另一个原因。
为探索铸坯气泡缺陷是否由连铸过程吸气所造成,于一个连铸浇次中选取三炉,且同一炉次分别取精炼成品样、连铸中包样及连铸坯角样,试样用于做氧氮分析对比,所取试样编号分别为1-1、1-2、1-3,2-1、2-2、2-3,3-1、3-2、3-2。化验结果表明,钢水从精炼到连铸过程浇注到钢水凝固形成铸坯,其各环节试样的氧氮含量波动均在工艺要求范围以内,证实钢水在连铸生产过程中并不存在吸气的现象;因此可断定,此期间的铸坯气泡缺陷与连铸过程吸气无关。
氩气作为一种保护性气体,在连铸采取全程保护浇铸中主要用于大包下水口与大包浸入式长水口之间的缝隙及中包上水口与中包浸入式水口滑板面之间的密封保护。由于浇注注流所产生的负压,一定量的保护氩气会被带入钢液之中。前者氩气会从中包的钢液表面上浮逸出,气泡基本上不会进入结晶器中,不会对铸坯气泡缺陷造成影响,而后者则会被带入结晶器中,进入结晶器的氩气泡随钢液运动至结晶器内一定深度的不同部位,一些来不及上浮的气泡在固液界面处会被凝固的枝晶捕捉,终导致铸坯气泡的形成。
为了进一步摸索近期气泡缺陷与氩气的关系,对板坯生产Q345B钢时,中包上水口与浸入式水口滑板面间均匀涂抹2mm厚的纳米密封涂料进行试验,以排除生产过程中滑板间氩气被吸入的可能性。后续跟踪发现,滑板间涂抹纳米密封材料后生产的Q345B钢仍有出现铸坯气泡缺陷的现象;实验表明,近期铸坯气泡缺陷与中包浸入式水口滑板间保护气体氩气无关。
合金元素对过冷奥氏体分解转变的影响
除Co外, 几乎所有合金元素都过冷奥氏体的稳定性, 推迟珠光体类型组织的转变, 使C曲线右移, 即提高钢的淬透性。常用提高淬透性的元素有:Mo、Mn、Cr、Ni、Si、B等。必须指出, 加入的合金元素, 只有完全溶于奥氏体时, 才能提高淬透性。如果未完全溶解, 则碳化物会成为珠光体的核心, 反而降低钢的淬透性。另外, 两种或多种合金元素的同时加入(如, 铬锰钢、铬镍钢等), 比单个元素对淬透性的影响要强得多。
除Co、Al外, 多数合金元素都使Ms和Mf点下降。其作用大小的次序是:Mn、Cr、Ni、Mo、W、Si。其中Mn的作用, Si实际上无影响。Ms和Mf点的下降, 使淬火后钢中残余奥氏体量增多。残余奥氏体量过多时,可进行冷处理(冷至Mf点以下), 以使其转变为马氏体; 或进行多次回火, 这时残余奥氏体因析出合金碳化物会使Ms、Mf点上升, 并在冷却过程中转变为马氏体或贝氏体(即发生所谓二次淬火)。
Q345B 钢的工艺路线:铁水→LD(100t 顶底复吹转炉)→LF(100t 精炼炉)→CCM(1600×180、220、250mm 2 板坯连铸机)。
气泡产生的原因
依据气泡所在的位置,将露出表面的称之为表面气泡,未露出表面的称之为皮下气泡。前者在未经清理的铸坯表面即可观察到,而后者只有在对铸坯表面进行火焰清理之后才可观察到。
中板厂轧材边部的气泡缺陷可分为两类:类气泡实际为皮下夹渣,主要与结晶器保护渣的卷入有关;一般零星出现的气泡缺陷有可能是此类原因导致的。第二类气泡缺陷主要是由钢水中的气体引起的;在钢水凝固过程中,钢液中所溶解的气体的分力大于钢水自身的静压力与大气压之和时就会产生气泡,若这些气泡不能从钢水中及时逸出,钢水凝固形成铸坯后就会造成皮下气泡缺陷。因我厂的Q345B生产过程中多表现为整炉出现气泡,而类气泡属零星出现,所以可排除类气泡,断定Q345B钢铸坯气泡为钢水中气体含量过高所致。
由于气体含量过高导致的板材气泡缺陷根源在于铸坯在浇注过程中已形成的宏观气泡,连铸过程铸坯产生气泡的主要原因有3 类:脱氧不良、过程吸气(空气、保护性气体)及水汽(潮湿的添加料和耐材),而炼钢工序出现上诉3种情况主要体现为终点状况差、强脱氧剂加入不足、钢水二次氧化、加入料潮湿、钢包等功能性耐材预准备使用把关不严等诸多环节问题均可归属于上述气泡产生的3大类原因之中。