随着生活水平的不断提高,社会公众安全意识的逐步增强,安全防范得到人们的广泛关注。而门禁系统作为整个安防系统的一部分,已经成为安防领域关注的焦点之一。而且伴随计算机技术的快速发展,人脸识别技术在安防领域得到大多数研发机构的青睐。
人脸是具有性的生物特征,而人脸识别技术是通过采集人脸图像,提取图像中的人脸特征从而实现身份识别。
随着高科技信息技术的快速发展,人脸识别技术逐渐往市场化、产品化的方向发展。人脸识别技术的类型也越来越多,如基于肤色的人脸识别技术、基于点位的人脸识别技术、基于几何特征的人脸识别技术等等,这几种人脸识别技术在工作原理有着一定的差异,应用范围也各不相同。本文主要就人脸识别技术的现状和类型进行分析,并对其发展趋势进行探讨。
近年来,伴随着网络技术及计算机技术的飞速发展,人们对信息的安全性、隐蔽性的要求越来越高,因此人体身份识别认证的需求也就越来越高。人脸识别是基于生物特征识别技术的身份认证中主要的方法之一,而且是人体身份识别方法中简单、方便的方法之一,也就受到越来越多的关注与研究。广义的人脸识别包括人脸检测、人脸表征和人脸识别。本文从人脸检测和人脸识别出发,针对其相关的工作展开讨论。首先,针对人脸图像的特点,讨论了人脸图像预处理和特征提取的相关知识,具体包括:人脸图像的灰度化、直方图以及直方图均衡化、边缘检测和小波分解。然后,详细介绍了Adaboost人脸检测算法和基于隐马尔可夫模型的人脸识别算法的基本原理及特点,并针对传统的Adaboost人脸检测算法,提出了一种增强型的Adaboost人脸检测算法,并对两种算法进行了比较。实验结果表明,本文提出的算法性能更好,人脸正确检测率和识别率都有了一定的提高。后,将本文提出的增强型Adaboost人脸检测算法与HMM人脸识别算法结合起来,设计并实现了一个人脸识别软件系统,并结合已有的人脸数据库和实验新建采集的人脸图像,对系统进行了实验仿真,
人脸识别系统是人脸识别技术在生物特征识别领域的应用,旨在将人脸图像作为一种可以标识的生物特征进行编码与鉴别,目前较为广泛的应用于安防领域。由于云台摄像头的可控旋转特性,基于云台摄像头的人脸识别系统可以应用于公共区域的跟踪或教室的等。
本文基于Labview图形开发环境构建了实时图像采集、人脸检测与识别、云台摄像头跟踪一体化的人脸识别系统