


价格:面议
0
联系人:
电话:
地址:
加速度传感器类型1. 直流响应加速度传感器的特点 直流响应加速度传感器是指具有直流耦合输出,能够响应低至0赫兹的加速度信号。因此直流响应的加速度传感器适合同时测试静态和动态的加速度,但是也并不是只有需要测试静态加速度时才选择直流响应的加速度传感器。直流响应加速度传感器主要有两种类别,分别是电容型和压阻型。下面说下就这两类加速度传感器各自的特点。电容型电容型加速度传感器在当今是通用的,在某些领域无可替代,如安全气囊,手机移动设备等。高的产量使得这类传感器成本低廉。但是这种低成本的加速度传感器受制于较低的信噪比,有限的动态范围。所有的电容型加速度传感器都具有内部时钟,它是检测电路必不可少的部分,由于泄漏经常会对输出信号产生干扰。这种噪声的频率远高于测量信号的频率,一般不会对测量结果造成影响,但是它始终和测试信号叠加在一起。由于内置了放大器芯片,其一般具有3线或4线差分输出接口,只要有直流供电便能工作。压阻型压阻型加速度传感器是另一种广泛应用的直流响应加速度传感器。不同于电容型加速度传感器通过电容的变化测量加速度,压阻型加速度传感器通过应变电阻值的变化输出加速度信号,应变电阻是传感器惯性感应系统的一部分。很多工程师熟悉应变片,并知道如何测量其输出。大多数的压阻型传感器对温度变化敏感,因而需要对其输出信号在传感器内部或外部做温度补偿。现代压阻型加速度传感器包含一个集成电路做在板信号处理,也包含温度补偿。2. 交流响应加速度传感器的特点 作为交流响应的加速度传感器,正如它的名称,它的输出是交流耦合的,这类加速度传感器不能用来测试静态的加速度,仅适合测量动态事件,比如重力加速度和离心加速度。常用的交流响应加速度传感器是采用压电元件作为其敏感单元的。当有加速度输入时,传感器中的检测质量块发生移动使压电元件产生正比于输入加速度的 电荷信号。从电学角度来看,压电元件如同一个有源的电容器,其内阻在10x9欧姆级别。由内阻和电容决定了RC时间常数,这也决定了传感器的高频通过特 性。基于这个原因,压电加速度传感器不能用于测量静态事件。压电元件可来自于自然界或者人造。它们有着不同的信号转换效率和线性关系。市场上主要有两类压 电加速度传感器-电荷输出型,电压输出型。大部分的压电加速度传感器采用锆钛酸盐陶瓷,具有很宽的工作温度范围,动态量程范围大,频率范围宽。电荷输出型加速度传感器把压电陶瓷封装在具有气 密性的金属外壳中。由于具有抵抗严酷环境的能力,其具有非常好的耐久性。由于其具有很高的阻抗,该传感器需要配合电荷放大器和低噪声屏蔽电缆使用,好是 同轴电缆。低噪声电缆是指其具有低的摩擦电噪声,这是一种运动产生的来自电缆本身的噪声。很多传感器厂家同时提供这种低噪声电缆。电荷放大器和电荷输出型 加速度传感器连接,从而可以消除电缆电容和传感器电容并联带来的影响。配合先进的电荷放大器,电荷输出型加速度传感器很容易实现宽的动态响应。由于压电陶 瓷的工作温度范围很宽,有些传感器可以用于-200°C到400°C,甚至更宽温度的环境。它们特别适合极限温度下的振动测试,如涡轮引擎的监测。传感器专题之压电陶瓷加速度传感器加速度传感器是测量加速度的传感器,应用较广的是压电加速度传感器,它采用石英、陶瓷等压电材料制作,具有频响宽、线性好等特点,广泛应用于航空、电力、化工、武器、船舶、汽车等领域的振动、冲击和爆炸等动态测试中。目前,易度传感主打国内市场的产品EA-192,完美的诠释了这一应用。压电加速度传感器是利用陶瓷的压电效应制成的一种加速度传感器。当压电陶瓷沿着一定方向受到外力作用时,内部会产生极化现象,同时在两个表面上产生符号相反的电荷。压电陶瓷加速度传感器常见的结构形式有基于压电元件厚度变形的压缩式加速度传感器、基于压电元件剪切变形的剪切式及复合型加速度传感器等3种。下面以一种压缩式加速度传感器为例,简单介绍压电式加速度传感器的工作原理。其结构图如图所示,它主要由压电元件、质量块、顶压弹簧、基座及外壳等部分组成。压电元件置于基座上用弹簧将压电元件压紧。测量加速度时,由于被测物体与传感器固定在一起,所以当被测物件作加速度运动时,压电元件也就受到质量块由于加速度运动产生的与加速度成正比的惯性力F作用,压电元件由于压电效应产生电荷q。利用加速度传感器测量物体的倾斜角度1 说明测量物体的倾斜角度是加速器传感器的一种常见的应用。虽然其基本原理十分简单,但是在具体实现中仍然会遇到很多困难,比如倾斜角度的精度问题,数学计算过于复杂等等。本文将对精度问题进行详细讨论,并给出一种简化的计算方法。2 基本原理由于加速度传感器在静止放置时受到重力作用,因此会有 1g 的重力加速度。利用这个性质,通过测量重力加速度在加速度传感器的 X 轴和 Y 轴上的分量,可以计算出其在垂直平面上的倾斜角度。这样,根据以上原理一个 2 轴加速度传感器可以测量在 X-Y 平面上的倾斜角度。需要注意的是,2 轴加速度传感器只能测量 X 轴和 Y 轴上的重力分量,因而只能测量 因而只能测量 X-Y平面上的倾斜角度 。可是由于物体在空间倾斜的时候,很难保证倾斜完全在 X-Y 平面上,这样只使用 2 轴加速度传感器进行测量会存在局限性,因此,我们考虑使用 3 轴加速度传感器。如下图所示,3 轴加速度传感器可以测量 X 轴、Y 轴和 Z 轴的重力分量,计算空间倾斜角度的公式可以推广为 。这个公式就是本文中用来测量物体倾斜角度的基本原理。需要说明的是,这里利用的是物体在静止时受到重力的性质,如果物体同时也有运动加速度的话,那么这个公式将不再准确。所以必须为公式增加一个限制条件,即 3 硬件实现目前,在消费类产品中使用的加速度传感器分为数字输出 (例如 ADXL345)和模拟输出 (例如 ADXL335)两种。数字输出的加速度传感器可以直接通过 I2C 或 SPI 总线与 MCU 进行连接;模拟输出的加速度传感器则需要使用 ADC 进行采样。现在,普遍使用的 MCU 中基本都有内置的 ADC 通道,所以无论是数字输出还是模拟输出的加速度传感器都可以非常容易地和 MCU 进行连接,进而实现测量功能。在当今信息技术呈爆炸式发展的潮流中,无线传感器以其全新的数据获取与处理技术逐渐进入人们的视线,并且在很多领域得到了广泛的应用与普及。当今国内无线传感器的发展方向大多集中在对于传感器数据接收的网络节点处,并且对用于信息处理的硬件设备也有部分研究。而伴随研究的不断深入与科技创新的不断突破,无线传感器已经开始向着智能式与便携式方向发展,它作为协作技术的核心部分其前景不可限量。无线传感器的所有技术是过去单一传感器技术、无线电通信技术的完美融合,并且在融合的同时更在操作便捷性上做出了极大的突破。无线电传感器因为其特殊的节点式感应接收模式使得它在通信能力上就会显得十分有限,对一些大规模的数据也很难及时做到处理与响应,而对于这种十分有限的数据处理能力,要想让无线电传感器发挥出其大的作用,就要根据实际的处理区域情况做出一系列相应的调整对策。作为当今国际学术领域的研究热点,无线电传感器的出现让微电子技术与计算机网络技术完美融合在一起。并使得这一技术在军事科技、国防科技、城市规划、抢险赈灾、环境保护等方面都体现出了十分重要的价值,世界各国都已无法忽视这一重要的技术。无线传感器的选用原则虽然无线传感器的出现时间并不长,但是它依旧有很多的种类,且每个类别所履行的实际任务也不同,在遇到实际的问题时,要根据现场的实际测量目的、测量对象及测量环境来科学的选取合适的无线传感器来进行数据收集。而无线传感器的实际选择应该遵循以下几个重要原则:灵敏度的选择。一般而言,对于无线电传感器来说设备的灵敏度当然是越高越好,但是在实际的使用中就会发现常常无线传感器的灵敏度会受到很多外界因素的不可抗逆性干扰,这就会使得整个数据测量的精确度受到干扰,此外,在方向性这一方面,传感器的灵敏度也不是越高越好,而是需要根据测量的对象来做进一步的选择,例如,如果选择的测量对象并非单向量,那么传感器的灵感度选择还是越小越好。稳定性及精度选择。无论何种设备在使用过程中都会出现性能变化,所以对于无线传感器而言,其稳定性还是十分重要的指标。所以在实际的传感器选择时就需要优先考虑测量的环境,在对使用环境做出详尽调查之后合理安排传感器的类型。而当一些传感器超龄服役过后还是需要对传感器的性能进一步进行测评,而对于一些环境变量不太稳定的区域,就可以选择一些更为耐用的传感器来应对环境的改变。之所以如此注重传感器的稳定性,是因为无线传感器的稳定性和精度之间是存在着严密的关系,一旦传感器的稳定性出现偏差,那么对于传感器的精度将是致命的打击。在测量时,有时还需要根据测量目的不同来选择无线传感器的类型。一般的测量目的分为定量分析和定性分析两类,对于定性分析而言,有一个概念性的数据结果即可,所以就不必使用精度偏高的传感器;而定量分析需要精确地得出监测数据,此时就需要精度等级较高的传感器来满足对于测量要求。频率响应。传感器的机械性能和结构不但可以影响其精确度与稳定性,还会对传感器的频率产生影响,只有传感器的频率响应得到十足的保证,传感器的测量范围也才能得到保证。