


价格:16800.00起
0
联系人:
电话:
地址:
提供重大及重点工程项目的大型金属结构的振动时效现场技术咨询与技术服务;提供余应力检测服务,保证检定结果的真实性及性;提供各种金属材料的材料力学性能检验,结构设计和强度分析检验,疲劳强度和疲劳寿命试验;提供不锈钢及铝合金等材料的振动时效处理及余应力检测;为用户的金属结构件提供现场振动时效处理;为您提供振动焊接服务;振动时效的作用(1)降低构件残余应力108吨汽车车架组合焊接后产生较大的残余应力。按照上海乐展电器有限公司制定的工艺参数,对108吨汽车车架振动时效后,残余应力下降17.92~88.83%,总应力水平下降为47.62%(见表14)。其中易发生裂纹部位一中横梁与纵梁联结处(见图14)残余应力下降88.83%。(2)防止或减少断裂裂纹,从动应力测试结果表明,应力集中部位正是车架多次发生断裂裂纹处,由此可见应力集中是车架裂纹的主要原因。用振动处理技术消除残余应力尽管是低应力下进行的,确能使残余应力大幅度下降。因此,在外界条件下(动载荷或温度变化等)而不产生微观断裂裂纹。总之,振动处理技术适用于各种焊接构件,其作用是,降低构件残余应力,提高构件疲劳寿命。台振动时效后的108吨汽车车架,在霍林河矿区运行一年多,至今未发现任何裂纹迹象,仅按此时间计算,振动后车架的开裂寿命是未时效车架平均开裂寿命的二倍以上。振动时效装置的选择振动时效是用振动方法降低和均化焊接构件残余应力。选择振动时效装置必须能够实现频率自动上升或自动下降,可点升频率或点降频率。振动频率可调到任何一个转速。我们选用的微机控制的振动时效装置,可自动描绘被振工件的频率-幅值特性曲线,能写出共振峰的转速和加速度幅值对应坐标值。能绘制振动前后曲线。转数范围:2000 R/Min-8000 R/Min;激振力调整范围:0-50KN;电机额定功率:1500W;适宜处理工件重量:≤30吨稳速精度:±1R/Min;加速度量程:0-50.0g;电机额定电流:10A;电机额定电压:150V;供电电源电压:交流220V±10%,50HZ±4%;绝缘等级:E级;工作条件:环境温度:-10℃—+40℃;相对湿度:不大于80%(25℃);在水工金属结构、水力机械行业,广泛存在特大型构件、多种材质组合件、现场焊接构件等特殊水工构件,由于不具备特大型退火炉,而且处理时间长、运输困难,无法采用热时效进行消除应力处理。如浙江省水利水电勘测设计院(简称我院)设计的浙江省白水坑水电站压力钢管出口处的钢岔管,为卜型岔管,主要直径3.85m,两只管直径各为2.27m,岔道全长10.78m,宽7.35m,材质为16Mn,重量36000Kg,承压静水头115m。该工件结构复杂,由多片不规则钢板及较厚的月牙肋组焊而成,存在着较大的焊接残余应力,尤其是在月牙肋与主管和支管间的焊缝附近。由于该岔管属于大型焊接构件,因此迫切需要寻求一种可靠、高效的消除残余应力工艺方法。2 振动时效工艺振动时效工艺(Vibratory Stress Relief)简称VSR技术,自20世纪70年代末从国外引进,经过国内的系统研究和消化吸收后,近年来不仅已在航天航空、石化、机床、机车车辆、冶金、造船、矿石机械、水工机械、等行业推广使用,而且还制定了相应的行业指导技术文件和推荐标准——HB/Z229—93《振动时效主要参数及技术要求》,以及JB/T5926—91《振动时效工艺参数选择及技术要求》。这些足以说明振动时效技术、已成熟,并已有据可依。振动时效是基于谐波共振原理,将激振器产生的周期性振动力通过共振因子放大,从而使被处理的构建获得相应的能量,此能量相当于热时效的热能,驱使工件内原子产生更大的振动,材料发生局部屈服,使晶体内部错位和晶界产生微观滑移,引起微观塑性变形,致使残余应力在量值上减少和整体应力在较低水平上的重新分布;在宏观上,通过外加的交变应力与工件内残余应力叠加使工件在较大残余应力区产生局部屈服,从而引起应力松弛和残余应力在量值上的减低。它不会改变材料的机械性能,也不会引起任何材料金相组织的变化。压力钢管在制作过程中会产生较大的残余应力,尤其是岔管,由于结构复杂,焊接后其内部残余应力较大,为保障钢岔管运行的可靠性,必须对焊接后的岔管进行消除残余应力处理。降低残余应力的方法在DL5017—93《压力钢管制造安装及验收规范》有明确规定。由于热处理的工艺设备投资大,处理时间长,且大口径岔管整体热处理后运输难度大,而振动时效技术作为一种高效节能技术,在相关行业已成熟应用,其设备便携,操作方便,对要求不改变构件材料金相组织的压力钢管来说,是一种高效地处理其残余应力的方案。3 白水坑水电站钢岔管的振动时效处理白水坑水电站装机容量2*20MW,为引水式水电站,设计静水头115m,一管二机布置,压力钢管出口处的钢岔管为卜形岔管,由厚度20.22.25mm的钢板卷拼成型,岔管月牙肋的厚度70mm,材料均为16Mn。该岔管的进口端中径3850mm,出口端中径各为2270mm,重量36000kg,于2002年9月由浙江省正邦水电建设有限公司制作完成。由于在岔管的成型和焊接使会产生大量的残余应力,我院设计要求岔管应经过退火消除残余应力处理,而就近的退火炉根本无法满足该岔管的退火工艺要求,且工程建设施工周期十分紧迫。经过多次消除残余应力方案研究及论证,并委托水利部产品质量标准研究所对岔管固有频率进行估算,认为采用振动时效技术降低及均化岔管残余应力是可行的。鉴于全国振动时效技术的推广中心华东分中心长期使用振动时效技术的经验,为此经业主、设计、监理等有关各方协商,本次白水坑水电站钢岔管的振动时效处理委托该中心进行。2002年10月23~25日,水利部全国振动时效技术推广中心华东分中心携设备赴白水坑水电站施工现场对上述钢岔管进行振动时效消除应力处理。业主、设计、制作、监理、等有关各方常见本次实施过程。3.1 岔管振动时效处理工艺方案转数范围:2000 R/Min-8000 R/Min;激振力调整范围:0-50KN;电机额定功率:1500W;适宜处理工件重量:≤30吨稳速精度:±1R/Min;加速度量程:0-50.0g;电机额定电流:10A;电机额定电压:150V;供电电源电压:交流220V±10%,50HZ±4%;绝缘等级:E级;工作条件:环境温度:-10℃—+40℃;相对湿度:不大于80%(25℃);振动时效技术在108吨矿用重型汽车车架上的应用经过多次的试验研究,采用振动时效技术降低108吨汽车车架焊接残余应力方面取得了显著的效果。试验证明,只要振动时效参数选择合理,完全可以用振动时效代替热时效,提高焊接构件疲劳寿命。特别是对108吨汽车车架(全长L=9001mm,重约10吨)等大型焊接构件(见图14),具有比热时效方便、省时、节约能源等突出特点。柴油机机体粗加工后的振动时效处理在对机体内应力检测的基础上,得出了机体在粗加工后有较大的内应力是机体在后序加工和使用中变形的主要原因,因此需进行二次时效处理。但在粗加工后再进行热时效,必将引起机体变形超差,并破坏加工面光洁度。经过测试数据分析证明,机体粗加工后增加振动时效处理作为二次时效工艺是可行的。现将振动时效处理的试验情况报告如下:1.振动时效设备本次试验选用了由上海乐展电器有限公司研制的“智能型振动消除应力系统”来处理机体,它是目前国内先进的新产品,自动化程度高,工艺确定后整个处理及工艺就自动一次完成。2.机体振动时效试验先用一台粗加工后废弃机体(16D0033号机体)进行先期试验积累数据,再用两台粗加工后的机体为试件;台用于振动时效技术参数选择(支撑点、激振点、激振器偏心档级、拾振点、激振频率、扫频频率),经振动后进行应力检测,观察振动时效消除应力的效果。第二台用于优化振动时效参数,观察台振动时效参数的稳定性,终确定振动时效工艺规程。3.台柴油机机体(机体主轴承号:2001—063)振动时效处理(1)手动操作程序:①将机体立放于平地上,并做三点支撑:一侧面中间支撑一点,另一侧面两点支撑,均用厚橡胶垫为支撑物。②将激振器(A型)装卡在右顶板七、八缸孔之间,调整偏心为二档。③将拾振器吸在靠近一号缸孔的端部右顶板角处。④连接电机-控制箱,拾振器-控制箱间连线。⑤连接电源线。⑥手调节电机转速至4200r/min振动处理30min。⑦振动处理同时记录加速度指数随时间变化的量值。(2)自动操作①现场布置同“手动操作程序”的①②③④⑤②将扫频值定在4500r/min。③按自动处理钮后全过程自动完成。处理曲线见图一、图二。(3)工艺效果检测①由图一、图二见振动处理过程中,幅频特性曲线左移峰值上升,时间—振幅曲线由上升逐渐变平,完全符合国家标准JB/T5926-98要求。②测试表明,振后残余应力普遍降低和均化,但应力总水平下降率只有21.6%低于国家标准(JB/T5926-98)中的有关规定。③结论:工艺基本符合,但需加大激振力。4.第二台机体(机体主轴承号:96-098)振动时效处理(1)第二台机体的振动时效处理与台不同之处在于两点:①将A型激振器改为B型,以增大激振力。②将激振点选在两处进行试验,即次在1~2缸孔之间,第二次在7~8缸孔之间,即为二次振动。其他参数不变。(2)工艺效果检测①幅频特性曲线及时间—振幅曲线变化正常。②由表七可见,振后残余应力普遍下降,且总应力水平下降40%以上,已完全符合国家标准(JB/T5926-98)要求。主要技术参数转数范围:2000 R/Min-8000 R/Min;激振力调整范围:0-50KN;电机额定功率:2200W;适宜处理工件重量:≤100吨 稳速精度:±1R/Min;加速度量程:0-50.0g;电机额定电流:80A;电机额定电压:2000V;供电电源电压:交流220V±10%,50HZ±4%;绝缘等级:E级;工作条件:环境温度:-10℃—+40℃;相对湿度:不大于80%(25℃);