


价格:20.00起
0
联系人:
电话:
地址:
请求,使用户获得所需的带宽和一定的服务质量保证,有了这一保证,用户的多媒体信息便不会受到网上数据流量的影响,这对于传送实时的、交互式的信息(如语音、视频等)特别有利。2)对传输距离的依赖小,使局域网和广域网之间的区别变模糊。传统的网络技术在传输距离上都有很大的限制,正是由于这些距离上的差异才有了局域网和广域网的区别。ATM可以在很大的距离范围内(从几米到数千千米之外)传送各种各样的实时数据,并可用于广域网、城域网、校园主干网和大楼主干网等,从而使局域网和广域网的区别趋于消失。3)具有很高的数据传输速率,并可支持不同速率的各种业务。ATM支持的速率可以从桌面级的25Mbit/s到24 Gbit/s,这样高的传输速率对于提高网络性能、适应多媒体信息的传输是非常有好处的,并且ATM可以工作在任何一种不同的速度下,使用不同的传输介质和传输技术。4)可在局域网和广域网中提供一种单一的网络技术,实现完网络集成。这种无缝集成将很有可能会淘汰今天所使用的网桥和路由器。微信公众号:计算机与网络安全局域网技术发展的直接推动力是计算机的飞速发展以及数据库、多媒体技术的广泛应用。在过去的20年中,计算机的速度提高了数百万倍,而网络的速度只提高了几千倍。今天,人们对计算机网络的传输速率及其他性能的要求越来越高,如果Ethernet仍保持以前10Mbit/s的数据传输速率,显然是远远不能满足需要的。目前,提供高速传输的网络有快速以太网、吉比特以太网、ATM网络等,它们都能实现100Mbit/s以上的传输速率,是提高网络传输速率的有效途径。1、快速以太网组网技术(1)快速以太网的发展和IEEE 802.3u随着局域网应用的深入,人们对局域网提出了更高的要求。1992年,IEEE重新召集了802.3会,指示制定一个快速的局域网协议。但在IEEE内部出现了以下两种截然不同的观点。一种观点是建议重新设计MAC协议和物理层协议,使用一种“请求优先级”的介质访问控制策略,采用一种具有优先级、集中控制的介质访问控制方法,比CSMA/CD控制方法更适合于多媒体信息的传输。支持这种观点的人组成自己的会,建立了局域网标准,即IEEE 802.12,常被称为100VG-Any LAN。但是这种标准不兼容原来的以太网,所以后来的发展不大。另一种观点则建议保留原来以太网的体系结构和介质访问控制方法(CSMA/CD)不变,设法提高局域网的传统速度。更高的要求。为此,吉比特以太网必须具有支持新应用与新数据类型的能力。3、ATM技术ATM技术问世于20世纪80年代末,是一种极具革命性的高速网络技术,这种技术提供了新颖的网络传输解决方案,并且是一种综合多项服务的技术。(1)ATM的工作原理ATM是在分组交换技术上发展起来的快速分组交换技术,充分吸取了分组交换高效率和线路交换高速的优点,克服了分组交换和线路交换方式的局限性,成为了宽带综合业务数字网(B-ISDN)的传递方式。ATM把不同长度的信息分割成一个个长度固定的小的数据碎片——信元(Cell)来加以传送,分割数据和传送数据的步骤都是靠硬件来完成的,非常快速。每个信元长53字节,其中5字节为信元头(Header),其余48字节为用户数据信息(User Data)部分。信元头字段包括信元的控制信息(如虚拟路径标识符、路由选择交换信息等)。ATM信元结构如图3所示。图3 ATM信元结构在实际工作中,ATM是采用虚电路方式来进行数据传递的。当ATM网中的一个工作站(发送方主机)要传送数据到另一个工作站(接收方主机)时,发送方主机首先根据对网络带宽的需求,发出连接建立请求。ATM交换机接收到该请求后,根据当前网络状况选择从发送方主机到接收方主机的路径,并构造出相应的路由表。这样就在两个主机之间建立了虚拟连接,但这种连接只是一种逻辑连接,因为ATM网只需要为这条虚电路分配必要的网络带宽,而不需要建立真正的物理链路。仅当有足够的可用带宽时,ATM交换机才允许连接。信元到达ATM交换机时,再根据信元头部分的虚拟路径标识符(Virtual Path Identifier,VPI)从路由表中选择一个表项,该表项将决定应将该信元送到哪个输出端口。同时,新的VPI值可能放入该信元,然后信元传至下一交换机。到10 ns。从技术上讲,快速以太网可以完全照搬原来的10 Base-5和10 Base-2标准,只将电缆长度减少到原来的1/10并仍能检测到冲突。由于使用UTP的10 Base-T的连线方式具有明显的优点,所以快速以太网是完全基于10 Base-T而设计的,使用集线器,而不再使用BNC连接器和同轴电缆。(2)快速以太网的协议结构100 Base-T 是现行 IEEE 802.3 标准的扩展,在 MAC 子层使用现有的 802.3 介质访问控制方法CSMA/CD,物理层做了一些必要的调整,定义了3种物理子层(Physical Layer PHY)。MAC子层通过一个媒体独立接口(Media Independent Interface,MII)与其中的一个物理子层相连接。MII和10 Base-T中的连接单元接口一样,提供单一的接口,能支持任何符合100 Base-T标准的网络设备。MII将物理层和MAC子层分割开来,这样物理层的各种变化(如传输介质和信号编码方式的变化)就不会影响到MAC子层。快速以太网的协议结构如图1所示。