


价格:188.00起
0
联系人:
电话:
地址:
西门子数控系统G1Z=R1意思是Z轴插补到位置R1的数字处,但要看R1等于多少,比如系统定义R1=100的话,则这句话就相当于G1Z100.REPOSA返回程序中断点,主要用在自动加工时的中断操作返回,详细介绍请查阅编程手册。MCALL意思为连续调用,意思为以下的程序段后,每段都会调用当前你所调用的加工功能或者功能子程序。公司主要从事工业自动化领域设备的研发、销售、维修和承接自动化工程及技术服务等,集产品销售、自动化控制工程、设备维修为一体,销售西门子PLC、触摸屏、变频器、SITOP电源、数控系统(840D、802S/C、802SL、828D 801D)、伺服数控V20/V90/V80V60、软启动、备件等各系列产品。我们在价格上有较大优势,更注重售后服务,现有大量现货销售,欢迎您来电咨询。 本公司所有销售中产品均为西门子原装正品,质保一年,假一罚百! 企业主要业务经营范围: 为工业企业提供智能制造整体解决方案顶层设计咨询和规划服务; 西门子软启动一级代理商 为工业企业数字化工厂产线设计、建设、互联互通等提供专业的产品、技术和服务。 为工业企业提供远程数据采集、监控、调试运维及工业大数据平台解决方案和服务。 为工业企业和政府提供电气自动化控制、传动整体解决方案及项目集成、实施应用。 为工业企业提供西门子工业软件及数字化工厂解决方案和实施服务。 为工业企业提供西门子自动化控制、网络通讯、变频电机、低压元器件、智能仪表等电气控制、传动产品及高、中、低压、西门子8PT配电产品、能源集团自动化等产品、技术和服务。 为工业企业智能装备层面提供自主知识产权的自动导引车、RFID、传感器、数据采集智能网关、低压配电柜、智能配电柜及电抗器、滤波器及快速布线端子板等产品。以少谋多 节能增效新建成的汽车制造厂都已具备很高的能效,但是,不断升级的竞争迫使它们寻觅能进一步削减成本的环节。生产过程中的能耗,便是这样一个具有节支潜力的环节。汽车行业竞争激烈。对于已经在为提高总体生产率和控制成本而忙得焦头烂额的汽车制造商而言,世界范围内的产能过剩带来的价格压力,不啻于雪上加霜。另一方面,大多数主要节支环节的能效提升潜力已被挖掘殆尽。该怎么办?降低能耗历来不乏吸引力,但在新车制造成本中,与制造过程中的能耗有关的成本仅占3%到5%。相比之下,造纸过程中的能耗成本高达15%。尽管如此,能源价格不断攀升,令汽车制造商不得不仔细审视降低能耗的可能性。例如,大众汽车集团在其《2011年可持续发展报告》中宣布,计划在2019年以前,将包括电、气和热在内的各种形式的能源的总消耗量降低四分之一。能源管理软件(上图)可以检测出诸如车身装配(下图)等工序中的用电浪费情况。压床(下图)的能效也在不断提升。一座日产1,000辆汽车的工厂的年耗电量动辄高达数亿度,与一座中型城镇的耗电量不相上下。大型冲压设备把钢板压成一个个的车身部件;机器人通过数千次焊接和黏合操作将这些车身部件装配起来;而涂装车间则必须保证喷漆温度恰当、运行大型通风系统以及向车间内机器人供电,因此其耗电量占工厂总耗电量的45%-60%。此外,传送系统还要将车门、发动机、传动系和车内配饰等运往装配线进行组装。上述每道工序要消耗多少能源?具体而言,哪些过程在什么时候会消耗多少电能、燃气和热能?只有先答对这些问题,工厂能找到有的放矢的提高能源效率的措施。西门子新开发的能源管理软件系统SIMATIC B.Data能助其一臂之力。这款智能能耗追踪软件能够单独记录每一台生产机器和每一个生产系统的能源使用情况,然后对这些数据进行处理,以执行细致深入的分析。例如,在德国的一家汽车制造厂里,该软件检测到,尽管工厂计划周末停工,但机器仍疑似存在很高的本底负荷能耗。它发现制造机器人一直将车身抬在作业高度,这就要求相关压缩机不停地向机器人输送压缩气体。Rudolf Traxler是西门子工业在奥地利林茨的能源管理系统负责人,他表示,“我们软件的主要目标之一是降低工厂的本底负荷。在非高峰时段,虽然工厂产量低至零,但这段时间的能耗通常占工作日总能耗的30%。”解决办法是关闭所有未使用的设备。位于奥地利斯泰尔的宝马发动机工厂现在就是这样做的。归功于SIMATIC B.Data及大量节能措施,这座工厂在停产期间的本底负荷已从8,000千瓦降至5,000千瓦。在安装SIMATIC B.Data系统之前,应考虑以下因素:要测量哪些设备的能耗、精确度要求如何,以及需要对测量解决方案进行何种程度的改装等。宝马斯泰尔工厂可年产发动机70万台,按15分钟间隔对大约700个监测点的能耗进行测量。对Traxler而言,透明度是节能增效的关键所在。他表示,“只有准确追踪能耗,才能激励工厂采取节能措施”。在位于德国雷根斯堡的宝马工厂里,SIMATIC B.Data会自动生成能耗日报和月报,帮助找到潜在的改进空间。2012年,雷根斯堡授予该工厂一项环境奖,表彰其在提升产量,扩建工厂的同时,还将耗能量在2004年的基础上削减了30%,相当于每年节省1.68亿度电。有了智能能耗追踪器,工厂可以针对生产及其调节控制软件,以进一步提升能效。以传动装置为例。在大多数工厂,用于驱动传送带系统、机器或生产机器人的大小各异的电机所消耗的电量,占总耗电量的三分之二左右。电机技术升级后可大幅降低成本。以西亚特位于西班牙Martorell的首要工厂为例。西门子为其涂装车间的大型通风设备加装了变频器,以根据实际需求调节电机转速。得益于此,其耗电量降低了40%。现代传动装置也能提升冲压设备的能效。借助数千吨压力的作用,这些大型机床可在转瞬之间将金属板材塑造成车门、车顶和引擎盖等部件。每次在机床抬起后,一个搬运机器人就会将车身部件移到邻近的压床上。许多时候,各种动作都是通过同一个由大型飞轮驱动的传动轴带动。但这种方法的能耗很高,鉴于此,大众汽车在西门子的协助下,对沃尔夫斯堡工厂的三个已经运行15年之久的冲压系统进行了升级。西门子工业的Bernd Dietz说:“现在,搬运机器人不再与主传动轴相连,而是由电子伺服系统带动。”这种方式能够更加准确高效地控制搬运机器人。西门子提供的冲压生产线仿真(PLS)模型能够确保金属冲压动作得到优化控制,即使这些昂贵的机器和搬运机器人的操作间隔非常之短,亦可保证它们不会相互碰撞。部署这些系统后,大众汽车的冲压生产率从每分钟14件增加到了16件。PLS还能缩短更换工具所需时间,因为新工具的仿真动作可直接导入冲压机床控制软件。从长远来看,实用性提高后,大众汽车的冲压生产线将从17条减至8条。此外,现在可将传动装置减速时节省的电能用于加速其他传动装置,进而将冲压生产线的能效提升约30%-40%。灵活性增强。现在,许多工厂在安装新的冲压机床时都选择了伺服电机驱动的伺服冲床。其优势在于该系统不必按照预设节奏运行,因此可根据实时要求单独控制冲压过程中上下运动的各个部件,而采用单一传动轴和飞轮的系统则做不到这一点。在将金属板材冲压成型时,冲床会慢慢下降,以保护模具,同时确保生产出高品质工件。然后,它将以快速度上升到冲程顶端,以便开始新一轮作业。在佳状态下,伺服冲床的产量是传统冲床的两倍,这将快速抵消其高昂的购置成本。然而,正如Dietz的同事Gerald Reichl博士所解释的那样,伺服冲床的电机能耗高于飞轮-传动轴组合。他说:“我们为波兰的一家汽车制造厂设计的飞轮式冲床的功耗为500千瓦;而一台配备了6台主用电机的伺服冲床在其所有电机同时运转的极端情况下,理论高功耗达3000千瓦。”然而,智能能源管理系统可确保该冲床仅需500千瓦电力,这是因为电容器和飞轮系统会在电机减速时收集所释放的电能,以供需要时使用。伺服冲床给冲压机床制造商带来了独特的设计挑战,因为可以利用各式各样的电机和不同的转矩,通过许多不同的方式来实现所需压力。尤其需要支持的是中小型制造商,机电一体化工程师Reichl表示,“我们开发的一个程序可以根据所需转速和冲力,计算出冲床的尺寸和优运动参数,以及适当的能源管理系统。”销售部负责人Alexandre Bonay指出,该项目耗时多年,“那时,虽然我们已经掌握了驱动和控制系统领域的专有技术,但在冲床领域仍是一片空白。”我们投入的时间非常值得。“我们的辛勤付出,换来了一个面向伺服冲床的综合解决方案,从设计到传动系统、控制技术、甚至计算机模拟,它无所不包。”这为冲压机床制造商提供了额外保障,因为该系统的仿真功能可按1:1的比例精确呈现计划制造的冲床,甚至早在制造出冲床之前,便可向客户展示其在正常生产过程中能够可靠地生产出多少件工件。汽车制造商可以将这种仿真结果导入其自有虚拟模型中,以确定未来车型的产量能够提高多少,进而在竞争激烈的全球市场上占据生产率和能效优势。作者:Christine Rüth公司主要从事工业自动化领域设备的研发、销售、维修和承接自动化工程及技术服务等,集产品销售、自动化控制工程、设备维修为一体,销售西门子PLC、触摸屏、变频器、SITOP电源、数控系统(840D、802S/C、802SL、828D 801D)、伺服数控V20/V90/V80V60、软启动、备件等各系列产品。我们在价格上有较大优势,更注重售后服务,现有大量现货销售,欢迎您来电咨询。 本公司所有销售中产品均为西门子原装正品,质保一年,假一罚百! 企业主要业务经营范围: 为工业企业提供智能制造整体解决方案顶层设计咨询和规划服务; 西门子软启动一级代理商 为工业企业数字化工厂产线设计、建设、互联互通等提供专业的产品、技术和服务。 为工业企业提供远程数据采集、监控、调试运维及工业大数据平台解决方案和服务。 为工业企业和政府提供电气自动化控制、传动整体解决方案及项目集成、实施应用。 为工业企业提供西门子工业软件及数字化工厂解决方案和实施服务。 为工业企业提供西门子自动化控制、网络通讯、变频电机、低压元器件、智能仪表等电气控制、传动产品及高、中、低压、西门子8PT配电产品、能源集团自动化等产品、技术和服务。 为工业企业智能装备层面提供自主知识产权的自动导引车、RFID、传感器、数据采集智能网关、低压配电柜、智能配电柜及电抗器、滤波器及快速布线端子板等产品。虚拟建造技术许多旱灾频发地区依赖于海水脱盐设施供应淡水。马霍卡岛便是这样一个地方。现在,一座采用西门子技术的海水脱盐工厂,将被树为典范。西门子工程师在虚拟世界里开发了这座工厂,以检验其创新的工程设计技术。为了节省时间和金钱,同时也为了提高精确度,西门子正在虚拟世界里建造一座海水脱盐工厂。在伊比利亚半岛的几乎每个地方,水都是一种宝贵的资源。西班牙旱灾程度之严重、频率之高,令这片土地不堪其苦。因此,淡水,特别是可供饮用的淡水,尤为宝贵。如今,干涸的水库、限量供应的饮用水和凋零的田野,已成为西班牙常见的景象。另一方面,淡水的稀缺,也促使西班牙人掌握了海水脱盐技术,因为沿着其绵长的海岸线,这个国家拥有取之不尽用之不竭的含盐水资源。西门子工业的Andreas Pirsing博士表示,“几年前,为了缓解淡水稀缺问题,西班牙政府发起了一项特殊的开发计划。作为该计划的一部分,在地中海沿岸新建了约30座海水脱盐工厂。在选择承建商时,西班牙政府有意扶持当地企业,这样,便能培育出高水平的技术专长。如今,这些技术已成功推广到世界其他地方。”专家预计,淡水危机将日益严峻。这对海水脱盐市场而言意义重大。尽管2012年,海水脱盐市场的销售额仅为184亿美元,但Companies & Markets预计,到2020年,这个数字将增至500亿。西门子的海水脱盐业务遍及全球。在新加坡,西门子工程师在该国政府组办的节能型海水脱盐技术“新加坡挑战赛”上一举夺魁。Pirsing说:“西门子还参与了西班牙政府发起的开发计划。西门子工业为一些工厂配备了自动化技术。其中一座工厂坐落于马霍卡岛的Alcudia。”马霍卡岛是著名的旅游胜地,但岛上淡水含水层较薄,且“浮”于地下苦碱水之上,因此,对海水脱盐技术尤为依赖。其淡水含水层无法为众多游客提供充足的饮用水。这座位于Alcudia的海水脱盐工厂采用了反渗透技术来生产淡水。这项工艺的原理是,通过施加外部压力,使海水中的水分子通过半透膜过滤析出,而盐分等大分子物质则保留在原溶液中。利用这项工艺,这座海水脱盐工厂每天可以生产多达1.4万立方米淡水。虽然Alcudia只是地中海沿岸众多海水脱盐工厂之一,但它已成为工程设计研究的焦点。Pirsing指出,“西门子正在以它为个案,研究一种全新的方法,该方法可能在整个工程设计界掀起一场革命。”与诸如空客、博世和戴姆勒等企业,以及若干高等学府和德国弗劳恩霍夫协会一道,西门子参与了得到德国教育与研究部资助的SPES_XT(软件平台嵌入式系统XT)计划。该计划的目标是,将软件建模方法和工具与用于开发嵌入式软件的分析技术无缝整合起来。个案研究。西门子的目标是优化一种用于规划海水脱盐工厂的方法,以在通用IT平台上,借助一套统一的软件工具,对彼此协调的不同工厂组件的虚拟模型进行编辑。Pirsing解释道,“我们在Alcudia工厂采用了这种方法。也就是说,我们用某种影子工程设计法来创建整座工厂的模型,并通过试验确定该方法能节省多少时间和金钱。Alcudia工厂特别适于进行个案研究,因为我们与客户关系融洽,这确保我们不仅拥有这座工厂部署的西门子自动化系统的全部数据,而且还能获得其他承包商提供的相关规划数据。”西门子研究院(CT)的Ulrich Lowen博士负责为该个案研究提供科学依据,他解释道,“当我们掌握了全部数据时,就像Alcudia工厂项目这样,我们就能轻而易举地在计算机上规划整座工厂。已经有大量规划在虚拟世界中执行。这种方法被称为‘基于模型的系统集成’,这意味着,首先利用计算机生成的虚拟表达——或称模型,对许多真实的工厂组件进行规划、组装和试验,然后再进行实际安装。在Alcudia工厂个案研究中,我们已经模拟了从井中抽取海水的整个过程,以及反渗透工艺的部分过程。”据Lowen透露,这种模拟的节支效应已初露端倪。Lowen说:“像Alcudia工厂这样的项目,不可能仅凭一个人的力量就完成详尽的规划和实现。相反,这项任务需要来自不同专业的众多工程师齐心协力完成。”项目参与者包括负责处理物理和化学过程的过程工程师,负责安装高压泵和半透膜模块的系统提供商,以及负责提供自动化系统和电源解决方案的管道规划师和电气工程师。Lowen解释道,“目前,项目参与者分别使用自有工具来执行相关任务。譬如,使用CAD工具进行过程设计和管道建设,使用微软Excel生成驱动器和仪器清单。这些工具以大相径庭的方式表达系统,包括工艺流程图、二维或三维模型、电路图,等等。”工具之间的不兼容,导致了时间和金钱的巨大浪费。这是因为,规划数据经许多不同的人处理,被多次改换格式,输入新工具以及转化为多种不同的“语言”。在这个过程中,一些信息会在工具切换之际丧失,并且用户有时也会曲解规划数据。Lowen解释道,“此外,任何突然变化都有可能削弱不同规划模型之间的一致性。譬如,假设负责管道中不计其数的液位传感器和不同检测装置的工程师突然发现,他需要另一个液位传感器。那么,必须将该传感器及有关线缆纳入工艺工程设计管道、仪器流程图、自动化系统部署计划、电气计划以及管道计划等。”为了保证切实有效地采取这些将会影响到各式各样系统模型表达的纠正举措,模型之间必须彼此协调。此外,所有工具都必须能在集中式IT平台上相互沟通。Pirsing说:“西门子是唯一一家能够提供此类集成式设施规划平台的企业——这个平台可以将所有彼此独立开发的工程设计工具汇接起来。换句话说,西门子是唯一一家集工程设计之大成的企业,譬如,被称为‘COMOS’的生命周期工程设计和设施管理系统,以及SIMATIC PCS 7控制系统。正因如此,我们是唯一一家在市场上提供该等工程设计解决方案的企业。”技术推广。总体而言,这种在新型IT平台上对Alcudia海水脱盐工厂进行整体虚拟规划、建模和模拟过程的工程设计技术,旨在表明该方法的效率和计算出能够节省多少时间和金钱。Pirsing说:“我们的项目已完成过半。如果成功的话,其结果将不仅影响到海水脱盐工厂的建设,而且将开启一片崭新的IT技术应用天地。解决了截然不同的挑战的方法,可以轻松推广用于其他类型的设施,如废水处理厂、泵站和水厂等。此外,这种方法也可推广用于其他行业,如石油天然气、制药以及化工行业等。”结合SPES_XT项目的其他合作伙伴在航空和汽车等行业针对类似问题的研究成果,终将形成一套全面的方法,令整个工程设计行业发生天翻地覆的变化。Nils EhrenbergG60准确定位1(精)、G61准确定位2(中)、G62准确定位3(粗)、G63攻螺纹、G64-67不指定、G68刀具偏置,内角、G69刀具偏置,外角、G70-G79不指定、G80固定循环注销、G81-G89固定循环、G90绝对尺寸、G91增量尺寸、G92预置寄存、G93时间倒数,进给率、G94每分钟进给、G95主轴每转进给、G96恒线速度、G97主轴每分钟转数、G98,G99不指定。