icp离子体发射光谱仪 电镀电感耦合等离子体光谱仪
价格:398000.00起
产品规格:
产品数量:
包装说明:
关 键 词:icp离子体发射光谱仪
行 业:仪器仪表 分析仪器 元素分析仪器
发布时间:2020-06-23
钢研纳克高分辨率时序扫描型ICP光谱仪测定镧铈合金中15种稀土元素
摘 要 利用钢研纳克检测技术有限公司研制的光栅刻线为3600条/mm的高分辨率时序扫描型ICP-AES发射光谱仪研究了镧铈基体对其中13种稀土元素分析线的光谱干扰情况。给出了镧铈合金中35%镧和65%铈作为基体时, 其中13 种稀土元素的分析谱线,并估算了各元素分析谱线的检出限,解决了以镧铈为基体材料的元素含量准确检测的难题。
关键词 ICP-AES,稀土;镧铈合金;光谱干扰
稀土镧铈合金主要用做贮氢合金材料和钢材添加剂,其主要功能为:1) 用LC/LPC金属作为添加剂提升金属材料综合性能方面的应用;2) 以LC/LPC金属作为合金主要成分研发高性能合金材料产品;3) LaCe/LaPrCe 作为合金化合物在镍氢电极负极材料方面的应用。ICP-AES法测定镧铈合金中的稀土元素时,由于ICP 相当强的激发能力, 使得可观测的稀土元素原子发射光谱比电弧或火花光源更加丰富,因此全面了解各元素之间的光谱干扰信息是ICP-AES法准确测定稀土元素的重要基础。
近年来,国内一些研究小组利用光栅刻线数为3600条/mm的高分辨率ICP-AES发射光谱仪, 系统地研究了十五种稀土元素作为基体时对其他稀土元素分析线的干扰轮廓[ 1-6]。镧铈合金由于受镧和铈双重基体的影响,光谱干扰更加复杂。本文采用钢研纳克检测技术有限公司的Plasma-1000型高分辨率时序扫描式ICP-AES光谱仪并在文献[1]-[6]的基础上,选择受镧或铈干扰小或干扰较小的谱线作为考察对象,考察了镧铈合金中各稀土元素受镧铈基体干扰的情况,给出了35%镧和65%的铈作为基体时, 其他13种稀土元素的分析线,并估算了此条件下各元素的检出限。
1 实验部分
1.1 仪器及参数
Plasma 1000 型顺序扫描发射光谱仪(纳克) , Czermy-Turner光学系统, 焦矩: 1000mm,光栅有效面积110×110,光栅刻线: 3600 条/mm, 倒线色散率和分辨率: 0.22 nm/mm,0. 0066 nm,入射狭缝20 μm, 出射狭缝20 μm。高频电源: 频率27. 12 MHz、入射功率1. 15 kW。工作气体: 氩气纯度> 99. 95%, 冷却气15 L/ min、等离子气1. 2 L/min、载气0.5 L/ min, 冲洗气3. 5 L/min, 观察高度15.0 mm。
1. 2 主要试剂与稀土标准系列
盐酸、硝酸均为AR级;稀土标准溶液:1 mg/mL,盐酸或硝酸介质;实验用水为蒸馏水。
1.3实验方法
1.3.1 准确称取0.1000 g试样于150 mL烧杯中,加盐酸10 mL,低温电热炉上加热溶解样品,待样品溶解完后,冷却至室温,转移到100 mL容量瓶,加水定容至刻度,此溶液用于测量除镧铈以外其他稀土元素;
1.3.2 准确分取20 mL 1.3.1的原溶液于100 mL容量瓶中,补加盐酸5 mL,加水定容至刻度,此溶液用于测量镧和铈元素。
1.3.3 标准曲线
除镧铈以外其它元素标准曲线:在五个100 mL容量瓶中,分别加入35 mg 99.99%的镧基体和65 mg 99.99%的铈基体,加盐酸10 mL,并分别加入10、50、100、500μg的Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tu、Yb、Lu、Y等稀土元素的混合标液,用水定容到刻度;
镧和铈标准曲线:在五个100 mL容量瓶中,分别加入10 mL盐酸,然后再分别加入0、12、13、14、15 mL的铈标准溶液(1 mg/mL)和0、7、6、5、4 mL的镧标准溶液(1 mg/mL),用水定容至刻度。
2 结果与讨论
2.1 分析谱线的选择
根据文献[1]-[6]中提供的纯溶液中杂质元素谱线的检出限、信背比以及不同稀土基体时的背景相当浓度值和扫描图综合考虑, 选择出适合镧铈基体中的稀土元素分析的分析线作为本实验的待考察谱线,见表1。实验结果表明,Tm、Nd、Tb在考察的范围内,没有找到特别合适的谱线,因此选择受两种基体干扰相对较小的谱线。
表1 Plasma 1000 谱线
元素 谱线/nm 元素 谱线/nm
La 333.749 Er 323.058; 337.271; 349.910; 369.265
Ce 413.380; 418.660 Tm 313.126; 342.508
Pr 414.311; 417.939; 422. 535 Yb 289.138; 328.937
Nd 401.225; 406.109; 430.358 Lu 261.542
Sm 359.260; 442.434 Y 324.228; 371.030; 377.433
Eu 381.967; 412.970 Dy 353.170
Gd 335.047; 336.223 Ho 345.600
Tb 350.917; 367.635
表2 镧铈合金中各稀土元素的分析谱线
元素 分析线/nm 元素 分析线/nm
La 333.749 Er 349.910 369.265
Ce 413.380 418.660 Tm 313.126
Pr 422.535 Yb 328.937
Nd 406.109 430.358 Lu 261.542
Sm 359.260 Y 324.228; 377.433
Eu 381.967 Dy 353.170
Gd 335.047 Ho 345.600
Tb 350.917; 367.635
2.2 检出限
在表2所列的仪器条件下测定了15 个稀土元素在镨钕基体中对所选的分析线按文献[ 7]估算了检出限。估算检出限公式如下:
,式中I n/I b为分析物的净强度和背景强度比; C为产生I n/I b 的分析物浓度。
表 3 镧铈合金中各稀土元素谱线检出限
元素 分析线/nm Plasma100检出限
/(?g/mL)
La 333.749;
379.478 0.0050
0.0035
Ce 413.380
418.660 0.015
0.019
Pr 422. 535 0.015
Nd 406.109
430.358 0.01
0.01
Sm 359.260 0.0075
Eu 381.967 0.001
Gd 310.050
335.047 0.0058
0.005
Tb 350.917
367.635 0.006
0.02
Er 337.271
369.265 0.003
0.0038
Tm 313.126 0.0025
Yb 328.937 0.0006
Lu 261.542 0.0013
Y 324.228
377.433 0.0028
0.0025
Dy 353.170 0.0024
Ho 345.600 0.005
3 结论
1)本工作就纳克生产的高分辨率光谱仪对稀土元素的分析性能和光谱干扰研究结果表明: 与普通分辨率光谱仪相比, 背景相当浓度值和光谱干扰程度显着降低, 因而提高了检出能力和分析结果的准确度,在以稀土为主要共存物的痕量稀土分析中具有明显优势。
2)研究了镧铈基体对其他13个稀土元素分析线的光谱干扰情况。给出了35%镧和65%的铈作为基体时, 13种稀土元素的分析线,并估算了此条件下各元素的检出限,为ICP-AES法准确测定镧铈合金中13种稀土元素奠定了基础。
参考文献:
1 李冰,尹明. 高分辨型电感耦合等离子体发射光谱仪测定稀土元素的光谱干扰研究I. 铈镨和钕基体[J]. 分析测试仪器通讯,2(6):63-81.
2 谷胜,杨赸原,李冰. 稀土元素原子发射光谱及其谱线干扰的高分辨率ICP-AES研究 Ⅱ. 钐基体对其他稀土元素的光谱干扰[J]. 光谱学与光谱分析(Spectroscopy and Spectral Analysis),1997, 17(2):8 8 -94.
3 应海,杨原,张志刚. 稀土元素原子发射光谱及其谱线干扰的高分辨率ICP-AES研究:Ⅲ镝基体对其他稀土元素的光谱干扰[J]. 光谱学与光谱分析(Spectroscopy and Spectral Analysis),1998, 18(5):559-564.
4 孙振华,孙大海,谷胜. 稀土元素原子发射光谱及其谱线干扰的高分辨率ICP-AES研究:VI 铕、钆基体对其他稀土元素的光谱干扰[J]. 光谱学与光谱分析(Spectroscopy and Spectral Analysis),2000, 20(1):49-54.
5 孙振华,谷胜,孙大海. 稀土元素原子发射光谱及其谱线干扰的高分辨率ICP-AES研究:V 镥、铥、钇、镱基体对其他稀土元素的光谱干扰[J]. 光谱学与光谱分析(Spectroscopy and Spectral Analysis),2000, 20(2):222-228.
6 孙振华,李冰, 孙大海. 稀土元素原子发射光谱及其谱线干扰的高分辨率ICP-AES 研究:VI 镧、铽、钬、铒基体对其他稀土元素的光谱干扰. 光谱学与光谱分析(Spectroscopy and Spectral Analysis),2001, 21(1):57-61.
7 Winge R K, Fassel V A, Peterson V J, etal. Inductively Coupled Plasma Atomic Emission Spectroscopy[M]. An Atlas of Spectral Information. Amsterdam: Elsevier, 1985.
电感耦等离子体原子发射光谱仪(ICP—AES)主要用于液体试样(包括经化学处理能转变成溶液的固体试样)中金属元素和部分非金属元素的定量分析。将样品溶液以气溶胶形式导入等离子体炬焰中,样品被蒸发和激发,发射出所含元素的特征波长的光。经分光系统分光后,其谱线强度由光电元件接受并转变为电信号而被记录。根据元素浓度与谱线强度的关系,测定样品中各相应元素的含量。
应用领域
可用于地质、冶金、稀土及磁材料、环境、医药卫生、生物、海洋、石油、化工新型材料、核工业、农业、食品商检、水质等各领域及学科的样品分析。可以快速、准确地检测从微量到常量约70种元素。
仪器原理 Principle
Plasma电感耦合等离子体发射光谱仪系统由光谱仪主机和一套PC机组成。整个仪器可以分为进样系统、高频发生系统、分光系统、检测控制与数据处理系统。
其工作原理是:待测试样经喷雾器形成气溶胶进入石英炬管等离子体中心通道,经过光源加热激发所辐射出光,经光栅衍射分光,通过步进电机转动光栅,将元素的特征谱线准确定位于出口狭缝处,光电倍增管将该谱线光强转变为光电流,再经电路处理,由计算机进行数据处理来确定元素的含量。
)分析流程全自动化控制,实现软件点火、气路智能控制功能;
2) 输出功率自动匹配调谐,功率参数程序设定;
3) 优良的光学系统,先进的控制系统,保证峰位定位准确,信背比优良;
4)极小的基体效应;
5)测量范围宽, 超微量到常量的分析,动态线性范围5—6个数量级;
6)检出限低,大多数元素的检出限可达ppb级;
7)良好的测量精度,稳定性相对标准偏差RSD≤1.5%(5ppm),优于国家A级标准(JJG768-2005);
8)功能强大、友好的人机界面分析软件,可在测定过程中,进行数据处理,方法编制和结果分析,是真正的多任务工作软件;该软件数据处理功能强大,提供了多种方法,如内标校正、IECS和QC监测功能等,可获得的背景扣除点以消除干扰;对输出数据可直接打印或自动生成Excel格式的结果报告.
技术参数 Parameters
分光系统
光路形式:Czerny-Turner型
光栅类型:离子刻蚀全息平面光栅
刻线密度:3600g/mm
步进电机小驱动步距:0.0004n
光室恒温:(30± 0.2)℃
分辨率:不大于0.008nm
出射、入射狭缝宽度:20μm
光室冲氩或氮(流量可调)
高频发生器
震荡频率:40.68MHz
震荡类型:自激式
功率稳定度:0.1%(长期25 ℃典型值)
工作线圈:3圈空心铜管外套聚四氟乙烯管
进样系统
进样方式:蠕动泵进样
配有多种雾室(旋流雾室、双筒雾室和耐氢氟酸雾室)
雾化器:同心雾化器
工作环境
仪器室内无腐蚀性气体;
空中的尘埃粒子须保持。
室内温度18℃~26℃;
室温应达到稳定状态,
温度变化率应小于1℃/h
相对湿度不大于70%。
尺寸和重量
仪器室内无腐蚀性气体;
空中的尘埃粒子须保持。
室内温度18℃~26℃;
室温应达到稳定状态,
温度变化率应小于1℃/h
相对湿度不大于70%。
镨钕合金中La、Ce、Sm的测定
根据GB/T 20892-2007 镨钕合金的产品标准,不同的牌号镨钕合金(045080,045075,045070)的稀土杂质含量要求见表1。因此需要对镨钕合金中的稀土杂质元素进行定量分析。由于稀土元素之间的光谱干扰比较严重,因此选择合适的谱线则尤为重要。本文通过对plasma 1000/2000轴向观测和安捷伦700系列的仪器进行比较,选择合适的分析仪器,合适的分析谱线, 建议报数的范围为:La报数1ug/ml(0.01%)以上,Ce报数10ug/ml(0.1%)以上,Sm报数5ug/ml(0.05%)以上。
表1 国标镨钕合金稀土(%)
牌号 RE不小于 Pr/RE Nd/RE La/RE Ce/RE Sm/RE
1 实验部分
1.1 仪器参数及试剂
本次试验采用plasma 1000/2000水平/安捷伦700系列对样品进行试验 ,仪器工作参数见表2-表3.
表2 plasma 1000仪器测定参数
工作条件 参数
冷却气流量L/min 18
辅助气流量L/min 0.5
载气流量L/min 0.7
射频功率W 1200
观测方向 径向
氩气纯度 >99.999%
表3 安捷伦700系列测定参数
工作条件 参数
冷却气流量L/min 15
辅助气流量L/min 1.5
载气流量L/min 0.7
射频功率W 1200
观测方向 径向
氩气纯度 >99.999%
1.2 样品处理
称取1g样品,缓慢滴入5ml盐酸,溶解样品,而后补加10ml盐酸,放在加热板上加热20min。
Pr、Nd基体溶解(单独溶解,终得到0.1g/ml的氧化钕和0.1ml/ml的氧化镨各一瓶):称取10g氧化镨、氧化钕于250ml烧杯中,加入10ml水,缓慢滴入盐酸(反应较为剧烈,滴入时小心)。直至反应完全,放在加热板上加热20min,冷却后转入100ml容量瓶中,定容摇匀。此溶液1ml中含有0.1g氧化镨、氧化钕。
2 结果与讨论
2.1 分析谱线的选择
稀土元素的谱线较为复杂,因此谱线选择尤其重要。谱线选择的时候,需要充分考虑谱线间的干扰。Plasma 1000的谱线图见图1-图3。在实际实验过程中通过比较1000,水平2000和安捷伦700系列三种仪器的分析谱图发现,plasma1000的分辨率相对较好,优于plasma 2000及安捷伦700系列。因此选用plasma 1000测定以下元素。同时三种仪器的可选的分析谱线见表4。
在镨钕基体中,La492.179峰型较为明显,在1ug/ml时即可出现峰型,在5ug/ml时有明显峰。建议出数据时出具1ug/ml(0.01%)以上的数据。
Ce413.380干扰较为严重,0.5ug/ml,1 ug/ml之间没有明显区别,5ug/ml时有较小峰型,50ug/ml有较明显峰型。建议出数据时出具10ug/ml(0.1%)以上的数据。
Sm443.432干扰较为严重,0.5ug/ml,1 ug/ml之间没有明显区别,5ug/ml时有较小峰型,5ug/ml与10ug/ml可以明显区分。建议出数据时出具5ug/ml(0.05%)以上的数据。
表4 谱线选择
元素 Plasma1000谱线 Plasma2000(水平)谱线 安捷伦700系列
La 492.179 -- --
Ce 413.380 -- --
Sm 443.432 -- --
图1 镨钕合金中Ce413.380峰型图
图2 镨钕合金中La峰型图
图3 镨钕合金中Sm峰型图
2.2 实际样品的测定
2.2.1溶液系列的配置
取4个100 mL容量瓶,分别加入各待测元素的标准溶液,补加10 mL盐酸,定容,摇匀。此标准溶液系列中各元素质量浓度相当于样品中各元素含量见表5。实际样品按照本文方法进行分析。
表5 标准溶液系列中各元素含量 %
元素 La Ce Sm
空白s0 镨钕基体+0 镨钕基体+0 镨钕基体+0
标准1(s0.5) 镨钕基体+0.005 镨钕基体+0.005 镨钕基体+0.005
标准2(s1) 镨钕基体+0.01 镨钕基体+0.01 镨钕基体+0.01
标准3(s2) 镨钕基体+0.05 镨钕基体+0.05 镨钕基体+0.05
标准4(s3) 镨钕基体+0.1 镨钕基体+0.1 镨钕基体+0.1
标准5(s4) 镨钕基体+0.5
2.2.2 测定结果
实际样品按照本文方法进行分析,其结果见表6.
表6 实际样品分析结果 %
元素 ICP-AES
La <0.01(0.0048)
Ce <0.1(0.083)
Sm <0.05(0.02)
3 结论
本文通过对plasma 1000/2000轴向观测和安捷伦700系列的仪器进行比较,选择合适的分析仪器,认为plasma1000的分辨率相对较好,优于plasma 2000及安捷伦700系列合适的分析谱线, 使用plasma 1000可以为镨钕合金中的稀土元素检测提供依据。
如何选择合适的ICP-OES
用户可以根据分析对象选择适合自己的观测方式的ICP类型:
高分辨单扫描:plasma1000(适合需要高分辨的钨钼钽铌、稀土等基体复杂分析)
全谱径向直读:plasma2000(适合地质、冶金等基体复杂物质分析)
全谱双向观测:plasma3000(适合地质、冶金分析及环保、水质等低含量分析)
根据进样类型配置不同附件:
MEINHARD同心雾化器、氢化物发生器、有机进样系统、耐高盐、耐氢氟酸系统
选择ICP-OES分析前提:
1、样品的含量应该符合其检测灵敏度要求(含量一般为μg/mL、μg/L级别);
2、样品前处理彻底和稳定;
3、干扰性小,并能利用方法排除;
4、方法各种参数的选择和优化;
5、进行正确性和精密性等试验.
-/gbahabd/-