青岛振动消除应力振动时效机振动时效仪
价格:16800.00起
产品规格:
产品数量:
包装说明:
关 键 词:青岛振动消除应力振动时效机振动时效仪
行 业:机械 电焊/切割设备 压焊机
发布时间:2020-05-18
振动焊接工艺规程
应该看到的是振动焊接和振动时效是为提高焊缝质量而在两个阶段分别采取的技术工艺过程。振动焊接是在焊接过程中进行的振动处理过程,而振动时效是在构件焊接成型后而进行的时效处理过程,前者的作用在於使晶粒细化提高材料的机械性能。降低焊接应力和变形、减少气孔和杂质并使焊接纹理细密提高宏观焊接质量。而后者则是专门用於降低和均化焊接应力,消除残余应力对变形、开裂和疲劳寿命的影响。相比较而言,尽管在消除应力方面、振动焊接起到一定的作用,但其毕竟振动很小,产生的动应力不大,因此消除主应力的效果是赶不上振动时效的效果更好。从这一点出发,对於大型构件建议工艺规程应是振动焊接与振动时效同时采用:即阶段在焊接过程中采用振动焊接、第二阶段采用振动时效处理这将是工艺规程。
一、振动焊接工艺参数
1.激振频率 20Hz~100Hz;
2.激振振幅 10μm~50μm;
3.振动方式 共振与非共振均可;
4.构件直接振动或振动台带动构件振动均可;
5.振幅的选择应尽量接近材料晶粒的直径,即不同材料选用不同的振幅;
6.在20Hz~100Hz范围内如有共振峰,可选择共振峰高1/3~2/3所对应频率来处理,但要保证振幅在规定范围内,共振易於调整振幅值;
振动消除应力系统技术参数
转数范围:2000 R/Min-8000 R/Min;
激振力调整范围:0-50KN;
电机额定功率:1500W;
适宜处理工件重量:≤100吨
稳速精度:±1R/Min;
加速度量程:0-50.0g;
电机额定电流:13A;
电机额定电压:150V;
供电电源电压:交流220V±10%,50HZ±4%;
绝缘等级:E级;
工作条件:环境温度:-10℃—+40℃;相对湿度:不大于80%(25℃)
振动时效提高工件抗静、动荷载变形能力的作用
振动时效使构件的塑性变形在使用前提前发生,并降低残余应力。因此振后的工件其弹性性能要比未振工件强,其抗静、动荷载变形能力比热时效工件还要好。
为了测定工件抗静、动荷载变形能力,又做了有关的试验。选用如图3.5所示的试样六件(应力框),每两件为一组。分别做未时效、热时效和振动时效三种不同处理,表面加工至▽6,并选如图3.5所示1~7处为测点。实验工况为抗静载能力测试和抗动载能力测试。
1.抗静载能力试验
没加荷载之前先测1~7点翘曲量。然后再在材料试验机上平放,支距为200mm,在7点处加静荷载1.4t,持续5分钟,卸下后按同样方法进行变形量的测量,结果列于表3.7中。
表3.7中说明,在静荷载作用下,未时效件在100~160μm的大变形占总测点的41.7%,热时效件也占41.7%,而振动时效件却为0。而小变形点(0~50μm),未时效件占58.3%,热时效件占50%,而振动时效件占83.3%。试验结果说明,热时效降低了工件抗静载变形的能力,而振动时效件却提高了工件抗静载变形能力25%以上。
2.抗动载能力的试验
同静载试验一样,在没加载荷载之前测各点的翘曲量。再将应力框以悬臂夹持,并用ZS-1000S型振动台以50Hz频率、61V电压进行振动处理20分钟。取下后重新测量各点的变形。结果如表3.8所示。
从表3.8中可以看出振动时效件的测点全落在小变形段上。大变形段上振动时效测点为0,而热时效件与未时效件相等。不难得出结论:振动时效同样提高了工件抗动载变形的能力,而热时效却降低了工件抗动载变形的能力。
其它床身的试验结果也得出了相同的结论:振动处理的铸件比不经时效的铸件抗静载能力提高30%左右,抗动载能力提高1~3倍,抗温度变形能力也提高近30%。与经热时效的铸件相比,振动处理件的抗静载能力提高40%以上,抗动载能力提高70%。
振动消除应力系统技术参数
转数范围:2000 R/Min-8000 R/Min;
激振力调整范围:0-50KN;
电机额定功率:1500W;
适宜处理工件重量:≤100吨
稳速精度:±1R/Min;
加速度量程:0-50.0g;
电机额定电流:13A;
电机额定电压:150V;
供电电源电压:交流220V±10%,50HZ±4%;
绝缘等级:E级;
工作条件:环境温度:-10℃—+40℃;相对湿度:不大于80%(25℃)
振动时效对工件残余应力的影响
零件内部的残余应力是使其尺寸精度不稳定的主要因素。影响尺寸稳定性的不仅是残余应力数值的大小,应力分布的均匀性也有着重大的影响。振动时效常被认为是消除工件残余应力的一种有效方法,但一系列试验研究证明,振动时效对均化残余应力也有更明显的作用。
通过实践和试验证明,振动时效对减少和均化残余应力皆有着良好作用。这是由于振动过程中,工件受周期性附加动应力的作用,在应力集中处首先发生局部的塑性变形,继而又在整体上发生较大的塑性变形。峰值应力处产生的塑性变形较大,而其它部位则相对较小。正是由于这种塑性变形导致了工件中残余应力的降低和均化
振动消除应力系统技术参数
转数范围:2000 R/Min-8000 R/Min;
激振力调整范围:0-50KN;
电机额定功率:1500W;
适宜处理工件重量:≤100吨
稳速精度:±1R/Min;
加速度量程:0-50.0g;
电机额定电流:13A;
电机额定电压:150V;
供电电源电压:交流220V±10%,50HZ±4%;
绝缘等级:E级;
工作条件:环境温度:-10℃—+40℃;相对湿度:不大于80%(25℃);
振动时效对工件尺寸精度稳定性的影响
振动时效在稳定工件尺寸精度、提高抗静、动态荷载变形能力方面,均优于热时效。这也是机床行业大量应用振动时效工艺的原因之一。
一、振动时效对零件尺寸精度的影响
国内外大量试验和实际应用已经证明,振动时效可使工件在长期使用中精度变化量比热时效小,工件尺寸稳定所需要的时间比热时效要短。因此说振动时效对于稳定工件的尺寸精度具有良好的作用。
齐齐哈尔机床厂对C5116A的滑枕的尺寸稳定性做了对比性检测,将9件滑枕静置在陈旧的水泥地面上,每月用合向水平仪检测一次平直性,共观测六个月。
其中02,06,07号滑枕未作任何处理。
01和03,04和05号滑枕采用串接式振动处理。用一阶固有频率激振25分钟后,再用二、三阶共振频率各激振2~5分钟。
08,09号滑枕在550℃热时效并保温6小时后,随炉冷至200℃出炉。
全部试样均在22℃±2℃七段(每段桥距200mm),测02导轨的平直性,测量精度2μm/m。对01,03,04和05号试样,在振前、振后各测一次观测其变形量为24μm,说明振动处理使变形量提前发生。
在六个月的检测中,未时效件共测量144段,振动处理件测量192段,热时效件测量96段。其结果如下:
月变形为未时效件8μm,振动时效件4.4μm,热时效件4.8μm。
3μm以上变形段数为未时效件30个,占总测量段数的20.8%;振动时效件20个,占总测量段数的10.4%;热时效件有11个,占总测量段数的11.4%。
表3.6和表3.7是CW6163床身尺寸稳定性检测结果。该床身为4500×500×600mm,重量为1.5t。用8件静置半年,每月测其导轨的平直性。每件17个测量段,每段桥距为200mm。
表3.5
未时效件 振动时效件 热时效件
月变形 μm 14 8 8
测量频数 289 306 204
变形量
6μm以上 频 数 36 8 9
相对频数 12.5% 2.6% 4.4%
变形量
9μm以上 频 数 7 0 0
相对频数 2.4% 0 0
表3.6
未时效件 振动时效件 热时效件
月变形 27μm 12μm 14μm
测量频数 45 45 30
变形量
6μm以上 频 数 36 8 9
相对频数 12.5% 2.6% 4.4%
变形量
9μm以上 频 数 7 0 0
相对频数 2.4% 0 0
从表3.5和表3.6中可见,热时效和振动时效均可使变形减少一半以上,且大变形的频数显着降低。如月变形量6μm以上的频数,未时效件是振动时效件的4.8倍,是热时效件的2.9倍。而累计变形就更加明显,变形11μm以上的频数,未时效件是热时效件的7.2倍,是振动时效件的9.6倍。
振动时效和热时效都起着使尺寸稳定而提高精度保持性的作用,而振动时效更优于热时效。这已为国内外大量试验验证而被广泛应用。
振动消除应力系统技术参数
转数范围:2000 R/Min-8000 R/Min;
激振力调整范围:0-50KN;
电机额定功率:1500W;
适宜处理工件重量:≤100吨
稳速精度:±1R/Min;
加速度量程:0-50.0g;
电机额定电流:13A;
电机额定电压:150V;
供电电源电压:交流220V±10%,50HZ±4%;
绝缘等级:E级;
工作条件:环境温度:-10℃—+40℃;相对湿度:不大于80%(25℃)
-/gbahfjh/-