进口MOS管IRF3710 型号齐全
价格:0.10起
产品规格:
产品数量:
包装说明:
关 键 词:进口MOS管IRF3710
行 业:仪器仪表 电子元器件 电源IC
发布时间:2019-12-02
韩国金胜特半导体器件,功耗低,升温低,可靠性高,稳定,性价比高!
产品名称 产品型号 封装 代替或兼容
MOS管 JST2N60U TO-251 FQU2N60/STD2NK60Z-1
JST2N60D TO-252 FQD2N60/STD2NK60ZT4
JST2N60P TO-220 FQP2N60/STP2NK60Z
JST2N60F TO-220F FQPF2N60C/STF2NK60Z
JST5N60P TO-220 FQP5N60C/KHB4D5N60P
JST5N60F TO-220F FQPF5N60C/KHB4D5N60F
JST5N65F TO-220F 4N65/5N65
JST8N60P TO-220 FQP8N60C/MDP8N60TH
JST8N60F TO-220F FDPF7N60NZ/MDP8N60TH
JST8N65F TO-220F 7N65/8N65
JST10N60F TO-220F FDPF10N60NZ/STP10N60ZFP
JST10N65F TO-220F 10N65
JST12N60F TO-220F FDPF12N60NZ/STF12N60Z
JST12N65F TO-220F 12N65/
JST8N80F TO-220F FQPF8N80C/STP8N80ZFP
JST7N80F TO-220F FQPF7N80C/STP7N80ZFP
JST6N80F TO-220F FQPF6N80C/2SK2605
JST9N90F TO-3P FQPF9N90C/STP9NK90Z
JST50N06F TO-220 FQPF50N06/STP50N06F1
IRF3205 TO-220 IRF3205PBF
1,MOS管种类和结构
MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管型号和增强型的P沟道MOS管型号,所以通常提到NMOS,或者PMOS指的就是这两种。至于为什么不使用耗尽型的MOS管,不建议刨根问底。对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。在MOS管原理图上可以看到,漏和源之间有一个寄生二管。这个叫体二管,在驱动感性负载,这个二管很重要。顺便说一句,体二管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。
2,MOS管导通特性
导通的意思是作为开关,相当于开关闭合。NMOS的特性,Vgs大于一定的值就会导通,适合用于源接地时的情况(低端驱动),只要栅电压达到4V或10V就可以了。PMOS的特性,Vgs小于一定的值就会导通,适合用于源接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。
3,MOS开关管损失
不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。
场效应管通过投影一个电场在一个绝缘层上来影响流过晶体管的电流。事实上没有电流流过这个绝缘体,所以FET管的GATE电流非常小。普通的FET用一薄层二氧化硅来作为GATE下的绝缘体。这种晶体管称为金属氧化物半导体(MOS)晶体管,或,金属氧化物半导体场效应管(MOSFET)。因为MOS管小省电,所以他们已经在很多应用场合取代了双型晶体管。
选择到一款正确的MOS管,可以很好地控制生产制造成本,为重要的是,为产品匹配了一款恰当的元器件,这在产品未来的使用过程中,将会充分发挥其“螺丝钉”的作用,确保设备得到高效、稳定、持久的应用效果。那么面对市面上琳琅满目的MOS管,该如何选择呢?下面,我们就分7个步骤来阐述MOS管的选型要求。
MOS管是电子制造的基本元件,但面对不同封装、不同特性、不同品牌的MOS管时,该如何抉择?有没有省心、省力的遴选方法?
首先是确定N、P沟道的选择
MOS管有两种结构形式,即N沟道型和P沟道型,结构不一样,使用的电压性也会不一样,因此,在确定选择哪种产品前,首先需要确定采用N沟道还是P沟道MOS管。
MOS管选型技巧
MOS管的两种结构:N沟道型和P沟道型
在典型的功率应用中,当一个MOS管接地,而负载连接到干线电压上时,该MOS管就构成了低压侧开关。在低压侧开关中,应采用N沟道MOS管,这是出于对关闭或导通器件所需电压的考虑。
当MOS管连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P沟道MOS管,这也是出于对电压驱动的考虑。
要选择适合应用的器件,必须确定驱动器件所需的电压,以及在设计中简易执行的方法。
第二步是确定电压
额定电压越大,器件的成本就越高。从成本角度考虑,还需要确定所需的额定电压,即器件所能承受的大电压。根据实践经验,额定电压应当大于干线电压或总线电压,一般会留出1.2~1.5倍的电压余量,这样才能提供足够的保护,使MOS管不会失效。
就选择MOS管而言,必须确定漏至源间可能承受的大电压,即大VDS。由于MOS管所能承受的大电压会随温度变化而变化,设计人员必须在整个工作温度范围内测试电压的变化范围。额定电压必须有足够的余量覆盖这个变化范围,确保电路不会失效。
此外,设计工程师还需要考虑其他安全因素:如由开关电子设备(常见有电机或变压器)诱发的电压瞬变。另外,不同应用的额定电压也有所不同;通常便携式设备选用20V的MOS管,FPGA电源为20~30V的MOS管,85~220V AC应用时MOS管VDS为450~600V。
第三步为确定电流
确定完电压后,接下来要确定的就是MOS管的电流。需根据电路结构来决定,MOS管的额定电流应是负载在所有情况下都能够承受的大电流;与电压的情况相似,MOS管的额定电流必须能满足系统产生尖峰电流时的需求。电流的确定需从两个方面着手:连续模式和脉冲尖峰。在连续导通模式下,MOS管处于稳态,此时电流连续通过器件。脉冲尖峰是指有大量电涌(或尖峰电流)流过器件。一旦确定了这些条件下的大电流,只需直接选择能承受这个大电流的器件便可。
选好额定电流后,还必须计算导通损耗。在实际情况下,MOS管并不是理想的器件,因为在导电过程中会有电能损耗,也就是导通损耗。MOS管在“导通”时就像一个可变电阻,由器件的导通电阻RDS(ON)所确定,并随温度而显着变化。器件的功率损耗PTRON=Iload2×RDS(ON)计算(Iload:大直流输出电流),由于导通电阻会随温度变化,因此功率耗损也会随之按比例变化。对MOS管施加的电压VGS越高,RDS(ON)就会越小;反之RDS(ON)就会越高。
对系统设计人员来说,这就需要折中权衡。对便携式设计来说,采用较低的电压即可(较为普遍);而对于工业设计来说,可采用较高的电压。需要注意的是,RDS(ON)电阻会随着电流轻微上升。
技术对器件的特性有着重大影响,因为有些技术在提高大VDS(漏源额定电压)时往往会使RDS(ON)增大。对于这样的技术,如果打算降低VDS和RDS(ON),那么就得增加晶片尺寸,从而增加与之配套的封装尺寸及相关的开发成本。业界现有好几种试图控制晶片尺寸增加的技术,其中主要的是沟道和电荷平衡技术。
第四步是确定热要求
在确定电流之后,就要计算系统的散热要求。设计人员必须考虑两种不同的情况:坏情况和真实情况。建议采用针对坏情况的计算结果,因为这个结果提供大的安全余量,能确保系统不会失效。在MOS管的资料表上还有一些需要注意的测量数据,比如封装器件的半导体结与环境之间的热阻,以及大的结温。
器件的结温等于大环境温度加上热阻与功率耗散的乘积,即结温=大环境温度+(热阻×功率耗散)。根据这个方程可解出系统的大功率耗散=I2×RDS(ON)。
由于设计人员已确定将要通过器件的大电流,因此可以计算出不同温度下的RDS(ON)。值得注意的是,在处理简单热模型时,设计人员还必须考虑半导体结/器件外壳及外壳/环境的热容量;即要求印刷电路板和封装不会立即升温。
雪崩击穿(指半导体器件上的反向电压超过大值,并形成强电场使器件内电流增加)形成的电流将耗散功率,使器件温度升高,而且有可能损坏器件。半导体公司都会对器件进行雪崩测试,计算其雪崩电压,或对器件的稳健性进行测试。
计算额定雪崩电压有两种方法;一是统计法,另一是热计算。而热计算因为较为实用而得到广泛采用。除计算外,技术对雪崩效应也有很大影响。例如,晶片尺寸的增加会提高抗雪崩能力,终提高器件的稳健性。对终用户而言,这意味着要在系统中采用大的封装件。
第五步是确定开关性能
选择MOS管的后一步是确定其开关性能。影响开关性能的参数有很多,但重要的是栅/漏、栅/源及漏/源电容。因为在每次开关时都要对这些电容充电,会在器件中产生开关损耗;MOS管的开关速度也因此被降低,器件效率随之下降;其中,栅电荷(Qgd)对开关性能的影响大。
为计算开关过程中器件的总损耗,设计人员必须计算开通过程中的损耗(Eon)和关闭过程中的损耗(Eoff),进而推导出MOS管开关总功率:Psw=(Eon+Eoff)×开关频率。
MOS管选型技巧
增强型NMOS管构成的开关电路
第六步为封装因素考量
不同的封装尺寸MOS管具有不同的热阻和耗散功率,需要考虑系统的散热条件和环境温度(如是否有风冷、散热器的形状和大小限制、环境是否封闭等因素),基本原则就是在保证功率MOS管的温升和系统效率的前提下,选取参数和封装通用的功率MOS管。
常见的MOS管封装有:
①插入式封装:TO-3P、TO-247、TO-220、TO-220F、TO-251、TO-92;
②表面贴装式:TO-263、TO-252、SOP-8、SOT-23、DFN5*6、DFN3*3;
MOS管选型技巧
TO封装MOS管
不同的封装形式,MOS管对应的限电流、电压和散热效果都会不一样,简单介绍如下。
TO-3P/247:是中高压、大电流MOS管常用的封装形式,产品具有耐压高、抗击穿能力强等特点,适于中压大电流(电流10A以上、耐压值在100V以下)在120A以上、耐压值200V以上的场所中使用。
TO-220/220F:这两种封装样式的MOS管外观差不多,可以互换使用,不过TO-220背部有散热片,其散热效果比TO-220F要好些,价格相对也要贵些。这两个封装产品适于中压大电流120A以下、高压大电流20A以下的场合应用。
TO-251:该封装产品主要是为了降低成本和缩小产品体积,主要应用于中压大电流60A以下、高压7N以下环境中。
TO-92:该封装只有低压MOS管(电流10A以下、耐压值60V以下)和高压1N60/65在采用,主要是为了降低成本。
TO-263:是TO-220的一个变种,主要是为了提高生产效率和散热而设计,支持高的电流和电压,在150A以下、30V以上的中压大电流MOS管中较为多见。
TO-252:是目前主流封装之一,适用于高压在7N以下、中压在70A以下环境中。
SOP-8:该封装同样是为降低成本而设计,一般在50A以下的中压、60V左右的低压MOS管中较为多见。
SOT-23:适于几A电流、60V及以下电压环境中采用,其又分有大体积和小体积两种,主要区别在于电流值不同。
第七步要选择好品牌
MOS管的生产企业很多,大致说来,主要有欧美系、日系、韩系、台系、国产几大系列。
欧美系代表企业:IR、ST、仙童、安森美、TI、PI、英飞凌等;
日系代表企业:东芝、瑞萨、新电元等;
韩系代表企业:KEC、AUK、美格纳、森名浩、威士顿、信安、KIA等;
台系代表企业:APEC、CET;
国产代表企业:吉林华微、士兰微、华润华晶、东光微、深爱半导体等。
在这些品牌中,以欧美系企业的产品种类全、技术及性能优,从性能效果考虑,是为MOS管的;以瑞萨、东芝为代表的日系企业也是MOS管的高端品牌,同样具有很强的竞争优势;这些品牌也是市面上被仿冒多的。另外,由于品牌价值、技术优势等原因,欧美系和日系品牌企业的产品价格也往往较高。
韩国和中国台湾的MOS管企业也是行业的重要产品供应商,不过在技术上,要稍弱于欧美及日系企业,但在价格方面,较欧美及日系企业具优势;性价比相对高很多。
而在中国大陆,同样活跃着一批本土企业,他们借助低的成本优势和快的客户服务响应速度,在中低端及细分领域具有很强的竞争力,部分实现了国产替代;目前也在不断冲击高端产品线,以满足本土客户的需求。另外,本土企业还通过资本运作,成功收购了安世半导体等国际知名的功率器件公司,将好地满足本土对功率器件的需求。
总结
小到选N型还是P型、封装类型,大到MOSFET的耐压、导通电阻等,不同的应用需求千
MOS管应用电路
MOS管显着的特性是开关特性好,所以被广泛应用在需要电子开关的电路中,常见的如开关电源,也有照明调光。
现在的MOS驱动,有几个特别的需求。1,低压应用当使用5V电源,这时候如果使用传统的图腾柱结构,由于三管的be有0.7V左右的压降,导致实际终加在gate上的电压只有4.3V。这时候,我们选用标称gate电压4.5V的MOS管就存在一定的风险。 同样的问题也发生在使用3V或者其他低压电源的场合。
MOS管的工作原理(以N沟道增强型MOS场效应管)它是利用VGS来控制“感应电荷”的多少,以改变由这些“感应电荷”形成的导电沟道的状况,然后达到控制漏电流的目的。在制造管子时,通过工艺使绝缘层中出现大量正离子,故在交界面的另一侧能感应出较多的负电荷,这些负电荷把高渗杂质的N区接通,形成了导电沟道,即使在VGS=0时也有较大的漏电流ID。当栅电压改变时,沟道内被感应的电荷量也改变,导电沟道的宽窄也随之而变,因而漏电流ID随着栅电压的变化而变化。
MOSFET管是FET的一种(另一种是JFET),可以被制构成增强型或耗尽型,P沟道或N沟道共4种类型,但理论应用的只需增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。场效应管分为结型场效应管(JFET)和绝缘栅场效应管(MOS管)两大类。
MOS管分类及区别
结型场效应管(JFET)
结型场效应管的分类:结型场效应管有两种结构形式,它们是N沟道结型场效应管和P沟道结型场效应管。
结型场效应管也具有三个电,它们是:栅;漏;源。电路符号中栅的箭头方向可理解为两个PN结的正向导电方向。2、结型场效应管的工作原理(以N沟道结型场效应管为例),N沟道结构型场效应管的结构及符号,由于PN结中的载流子已经耗尽,故PN基本上是不导电的,形成了所谓耗尽区,当漏电源电压ED一定时,如果栅电压越负,PN结交界面所形成的耗尽区就越厚,则漏、源之间导电的沟道越窄,漏电流ID就愈小;反之,如果栅电压没有那么负,则沟道变宽,ID变大,所以用栅电压EG可以控制漏电流ID的变化,就是说,场效应管是电压控制元件。
绝缘栅场效应管
1、绝缘栅场效应管(MOS管)的分类:绝缘栅场效应管也有两种结构形式,它们是N沟道型和P沟道型。无论是什么沟道,它们又分为增强型和耗尽型两种。
2、它是由金属、氧化物和半导体所组成,所以又称为金属—氧化物—半导体场效应管,简称MOS场效应管。
3、绝缘栅型场效应管的工作原理(以N沟道增强型MOS场效应管)它是利用UGS来控制“感应电荷”的多少,以改变由这些“感应电荷”形成的导电沟道的状况,然后达到控制漏电流的目的。在制造管子时,通过工艺使绝缘层中出现大量正离子,故在交界面的另一侧能感应出较多的负电荷,这些负电荷把高渗杂质的N区接通,形成了导电沟道,即使在VGS=0时也有较大的漏电流ID。当栅电压改变时,沟道内被感应的电荷量也改变,导电沟道的宽窄也随之而变,因而漏电流ID随着栅电压的变化而变化。场效应管的工作方式有两种:当栅压为零时有较大漏电流的称为耗散型;当栅压为零,漏电流也为零,必须再加一定的栅压之后才有漏电流的称为增强型。
-/gbadchh/-