然而,美国有望超过日本成为第二大市场,根据Mercom,其预计安装量达到8.5GW左右,高于GTM/SEIA最近对于2014年公布的6.2GW的数字。
应用领域编辑
1.用户太阳能电源:(1)小型电源10-100W不等,用于边远无电地区如高原、海岛、牧区、边防哨所等军民生活用电,如照明、电视、收录机等;(2)3-5KW家庭屋顶并网发电系统;(3)光伏水泵:解决无电地区的深水井饮用、灌溉。
2. 交通领域:如航标灯、交通/铁路信号灯、交通警示/标志灯、宇翔路灯、高空障碍灯、高速公路/铁路无线电话亭、无人值守道班供电等。
3. 通讯/通信领域:太阳能无人值守微波中继站、光缆维护站、广播/通讯/寻呼电源系统;农村载波电话光伏系统、小型通信机、士兵GPS供电等。
4. 石油、海洋、气象领域:石油管道和水库闸门阴极保护太阳能电源系统、石油钻井平台生活及应急电源、海洋检测设备、气象/水文观测设备等。
5.家庭灯具电源:如庭院灯、路灯、手提灯、野营灯、登山灯、垂钓灯、黑光灯、割胶灯、节能灯等。
6.光伏电站:10KW-50MW独立光伏电站、风光(柴)互补电站、各种大型停车厂充电站等。
7.太阳能建筑:将太阳能发电与建筑材料相结合,使得未来的大型建筑实现电力自给,是未来一大发展方向。
8.其他领域包括:(1)与汽车配套:太阳能汽车/电动车、电池充电设备、汽车空调、换气扇、冷饮箱等;(2)太阳能制氢加燃料电池的再生发电系统;(3)海水淡化设备供电;(4)卫星、航天器、空间太阳能电站等。
逆变器编辑
(1)光伏电池组件分组阵列连接要求。光伏电池组件在排布阵列安装时应根据可能选用逆变器的额定工作电压(V)范围和功率容量(W)等参数进行分组设计。电池组件可以通过同类型组件的串联叠加电压和功率形成“一串”连接组件及相应的输出电压(V)和功率(W)。为了保证光伏组件正常工作,只允许相同型号的光伏组件进行串联。多个光伏组件串联后可以再进行并联,并联的光伏组件端电压相差不应超过10%。一串或多串(相同电压、功率)组件通过并联即形成“分组阵列”,该“分组阵列”的总功率(W)为所有组件功率的总和,本附件中的图1给出了三种光伏电池的串并联形式。同一分组阵列中的组件在安装时,应尽可能保证具有相同的太阳辐射条件(朝向、倾角等)。
(2)逆变器选配要求。光伏电池一般经过串、并联组成光伏分组阵列接入逆变器的直流侧,逆变器对于接入的光伏分组阵列有以下要求:a)光伏分组阵列的端电压应满足逆变器直流输入电压范围,当电压低于其范围下限时,逆变器将停止运行。此时光伏发电系统不输出电力,即认为系统不能发电,应在发电量计算中予以剔除。为简化计算在此可通过电池表面太阳光辐照阈值(光伏电池组件启动发电时其表面所应接受到的最低辐射量限值,单晶硅和多晶硅电池启动发电的表面总辐射量≥80W/m、薄膜电池表面总辐射量≥30W/m)进行判断;b)光伏阵列的最大功率不能超过逆变器的额定容量。根据设计的电池组件分组阵列的输出电压和总功率选配相应工作电压和功率的逆变器,或根据逆变器的参数调整设计电池组件分组阵列串并联的方式以满足相应的输出电压和总功率。逆变器的选配容量应≥光伏电池组件分组安装的容量。 [4]
1 安装太阳能光伏发电系统要求专门的技能和知识,必须由专业资格的工程师来完成。
2 安装人员在尝试安装,操作和维护的光伏组件时,请确保您完全理解在此安装说明手册的资料, 了解安装过程中可能会发生伤害的风险。
3 光伏组件在光照充足或其他光源照射下时生产电力。应当操作时请采取相应的防护措施,避免人 员与 30V DC 或更高电压直接接触。 4 太阳能光伏组件能把光能转换成直流电能,电量的大小会随着光强的变化而变化。
5 当组件有电流或具有外部电源时,不得连接或断开组件。
6 安装、使用组件或进行接线时,应使用不透明材料覆盖在太阳能光伏组件阵列中组件的正面,以 停止发电。
7 应遵守所有地方、地区和国家的相关法规,必要时应先获得建筑许可证。
8 太阳能光伏组件没有用户可维修的原件,不要拆解、移动或更改任何附属的部件。
9 太阳能光伏组件安装时不要穿戴金属戒指、表带、耳环、鼻环、唇环或其它的金属配饰。
10 在潮湿或风力较大的情况下,请不要安装或操作组件。
11 不要使用或安装已经损坏的组件,不要人为地在组件上聚光。
12 只有相同型号的光伏组件模块才能组合在一起。避免光伏组件的表面产生不均匀阴影。被遮阴的 电池片会变热(“热斑”效应)从而导致组件永久性的损坏。
13 当有意外情况发生时,请立即把逆变器和断路器关闭。
14 缺陷或损坏的组件依旧可能会发出电量。如果需要搬运请采取措施遮挡,以确保组件完全遮阴。
15 在运输和安装组件时,使儿童远离组件。
16 光伏组件在安装前请一直保存在原包装箱内。
太阳能光伏并网发电系统通过把太阳能转化为电能,不经过蓄电池储能,直接通过并网逆变器,把电能送上电网。太阳能并网发电代表了太阳能电源的发展方向,是21世纪最具吸引力的能源利用技术。与离网太阳能发电系统相比,并网发电系统具有以下优点:
1)利用清洁干净,可再生的自然能源太阳能发电,不耗用不可再生的,资源有限的含碳化石能源,使用中无室气体和污染物排放,与生态环境和谐,符合经济社会可持续发展战略。
2)所发电能馈入电网,以电网为储能装置,省掉蓄电池,比独立太阳能光伏系统的建设投资可减少达25%—45%,从而使发电成本大为降低。省掉蓄电池并可提高系统的平均无故障时间和蓄电池的二次污染。
3)光伏电池组件与建筑物完美结合,既可发电又能作为建筑材料和装饰材料,使物质资源充分利用发挥多种功能,不但有利于降低建设费用,并且还使建筑物科技含量提高,增加卖点。
4)分布式建设,就近就地分散发供电,进入和退出电网灵活,既有利于增强电力系统抵御战争和灾害的能力,又有利于改善电力系统的负荷平衡,并可降低线路损耗。
5)可起调峰作用。联网太阳能光伏系统是世界各发达国家在光伏应用领域竞相发展的热点和重点,是世界太阳能光伏发电的主流发展趋势,市场巨大,前景广阔。
太阳能电池发电系统是利用光生伏打效应原理制成的,它是将太阳辐射能量直接转换成电能的发电系统。它主要由太阳能电池方阵和并网逆变器两部分组成。如下图所示:白天有日照时,太阳能电池方阵发出的电经过并网逆变器将电能直接输送到交流电网上,或将太阳能所发出的电经过并网逆变器直接为交流负载供电。
组件类型编辑
单晶硅
单晶硅太阳能电池的光电转换效率为17%左右,最高的达到24%,这是所有种类的太阳能电池中光电转换效率最高的,初期制作成本很大,但随着技术的成熟,价格已与多晶相差不多。由于单晶硅一般采用钢化玻璃以及防水树脂进行封装,因此其坚固耐用,使用寿命一般可达15年,最高可达25年。
多晶硅
多晶硅太阳电池的制作工艺与单晶硅太阳电池差不多,但是多晶硅太阳能电池的光电转换效率则要降低不少,其光电转换效率约12%左右 (2004年7月1日日本夏普上市效率为14.8%的世界最高效率多晶硅太阳能电池)。从制作成本上来讲,比单晶硅太阳能电池要便宜一些,材料制造简便,节约电耗,总的生产成本较低,因此得到大量发展。此外,多晶硅太阳能电池的使用寿命也要比单晶硅太阳能电池短。从性能价格比来讲,单晶硅太阳能电池还略好。
非晶硅
非晶硅太阳电池是1976年出现的新型薄膜式太阳电池,它与单晶硅和多晶硅太阳电池的制作方法完全不同,工艺过程大大简化,硅材料消耗很少,电耗更低,它的主要优点是在弱光条件也能发电。但非晶硅太阳电池存在的主要问题是光电转换效率偏低,国际先进水平为10%左右,且不够稳定,随着时间的延长,其转换效率衰减。
多元化
多元化合物太阳电池指不是用单一元素半导体材料制成的太阳电池。各国研究的品种繁多,大多数尚未工业化生产,主要有以下几种:
a) 硫化镉太阳能电池
b) 砷化镓太阳能电池
c) 铜铟硒太阳能电池(新型多元带隙梯度Cu(In, Ga)Se2薄膜太阳能电池
业内人士认为,2015年装机规模再次提高超出预期,显示出国家支持光伏发展的决心。此外,对征求意见稿中一些细则的修改,则预示了国家政策的微调。今年17.8GW的装机预计能够实现,光伏电站建设将向地面和“大型分布式”倾斜。
除提高装机规模外,《通知》对征求意见稿中细则做出修改,显示政策的调整。第一,《通知》中取消对分布式和地面电站建设规模比例的划分,显示国家放宽对地面电站建设的限制。
第三,《通知》取消征求意见稿中对屋顶分布式3.15GW最低建设规模的限制,由硬性规定改为鼓励。
-/gbabfha/-