


价格:面议
0
联系人:
电话:
地址:
IGBT模块的生产流程?可以看到IGBT模块横切面的界面,目前壳封工艺的模块基本结构都相差不大。IGBT模块封装的流程大致如下:贴片→真空回流焊接→超声波清洗→X-ray缺陷检测→引线键合→静态测试→二次焊接→壳体灌胶与固化→端子成形→功能测试(动态测试、绝缘测试、反偏测试),贴片,首先将IGBT wafer上的每一个die贴片到DBC上。DBC是覆铜陶瓷基板,中间是陶瓷,双面覆铜,DBC类似PCB起到导电和电气隔离等作用,常用的陶瓷绝缘材料为氧化铝(Al2O3)和氮化铝(AlN);真空焊接,贴片后通过真空焊接将die与DBC固定,一般焊料是锡片或锡膏;X-ray空洞检测,需要检测在敢接过程中出现的气泡情况,即空洞,空洞的存在将会严重影响器件的热阻和散热效率,以致出现过温、烧坏、爆裂等问题。一般汽车IGBT模块要求空洞率低于1%;接下来是wire bonding工艺,用金属线将die和DBC键合,使用较多的是铝线,其他常用的包括铜线、铜带、铝带;中间会有一系列的外观检测、静态测试,过程中有问题的模块直接报废;重复以上工序将DBC焊接和键合到铜底板上,然后是灌胶、封壳、激光打码等工序;出厂前会做然后的功能测试,包括电气性能的动态测试、绝缘测试、反偏测试等等。自动化设备在IGBT模块的封装中提高了生产工艺的稳定性。深圳静态测试工业模块自动组装线
基于高压大功率器件封装结构散热方面的考虑,除了在封装结构设计过程中,采用高热导率耐高温封装材料和高温焊料,以及时有效的将芯片的热量传递给其他层封装材料之外,还需要有尽可能多的散热路径,如将芯片上表面的键合线取消,利用芯片上表面的散热通路等。近年来,取消键合线的功率器件封装设计研究与实践也频频见于各种文献资料。这也表示着器件封装的发展趋势。同时需要指出的是,取消键合线封装不仅对于芯片封装散热友好,对于封装的可靠性也具有优势。开发体积紧凑、结构设计简单且具有高效散热能力的封装结构成为未来功率半导体器件封装性能提升的关键。通过对现有功率器件封装方面文献的总结,从器件封装结构散热路径的角度可以将功率器件分为单面散热器件、双面散热器件和多面散热器件。深圳外壳组装兼容设备通过自动化设备,IGBT模块的工作原理得以实现,确保快速开断和电流流向的精确控制。
截齿中频焊接调质设备生产线的主要优点:1、截齿的耐磨性和硬度都能明显提高。通过一体化处理截齿硬度高、韧性好、耐磨耐冲击等特点;2、抗弯性能明显提高。这种一体化处理热处理工艺加热后,使齿体的整体抗弯能力及齿柄的表面强度得到了很大提高,保证了截齿的正常使用。3、钎焊和调质同步同时完成,避免了钎焊,调质分步工艺的重复加热。克服了分步工艺存在的焊缝氧化、蒸发、合金头裂纹,截齿尖部软化等问题。截齿综合机械性能提高,焊缝充盈饱满。整体工艺合理,质量提高。4、采用IGBT中频焊接设备:设备稳定高效、节水省电、即开即用。5、加热炉采用仿形设计,加热均匀、焊接牢固。6、截齿自动进入加热炉,焊接加热完成后,自动出炉,自动化程度高,节约人力,提高产量。
双极晶体管绝缘栅(IGBT)由于其输入阻抗高、开关速度快、通态电压低、阻挡电压高、电流大、热稳定性好,已成为当今电力半导体设备开发的主流。普遍应用于高速铁路和轨道交通、汽车电子、风能发电、太阳能、家用电器、节能、UPS,数控机床、焊机、动力传动等领域。对于IGBT模块,模块的外部是外壳和金属端子。不只有芯片,还有键合线、绝缘陶瓷基板和焊接层,统称为机械连接。为了保证产品的耐久性,即商品的使用寿命。IGBT模块制造商将在较终确定之前进行一系列可靠性测试,以确保产品的长期耐久性。通过自动化设备,IGBT模块的封装过程更加一致和可控。
焊接 IGBT 功率模块封装失效机理:键合线失效,一般使用 Al 或 Cu 键合线将端子与芯片电极超声键合实现与外部的电气连接,两种材料均与 Si 及Si 上绝缘材料,如 SiO2 的 CTE 差别较大。当模块工作时,IGBT 芯片功耗以及键合线的焦耳热会使键合线温度升高,并在接触点和键合线上产生温度梯度,形成剪切应力。长时间处于开通与关断循环的工作状态,产生应力及疲劳形变累积,会导致接触点产生裂纹,增大接触热阻,焦耳热增多,温度梯度加大较终导致键合线受损加剧,形成正向反馈循环,较终导致键合线脱落或断裂。研究表明,这些失效是由材料 CTE 不匹配导致的结果。键合线断裂的位置出现在其根部,这种根部断裂是键合线失效的主要表现。一些研究指出,可以通过优化键合线的形状来改善其可靠性。具体而言,键合线高度越高、键合线距离越远,键合线所受应力水平越低,可靠性越高。IGBT自动化设备通过动态测试可以准确评估器件的响应速度和可靠性。深圳外壳组装兼容设备
自动化设备保证了IGBT模块的高可靠性和高功率密度要求。深圳静态测试工业模块自动组装线
采用纳米银烧结将Mo柱、SiC芯片和Cu柱连接到基板上。相比合金焊料,烧结银导热性能优异,有助于降低芯片连接层的热阻。可在两侧基板表面分别连接热沉进行双面散热。该双面散热封装模块的结壳热阻只有0.17℃/W,封装耗散功率密度超过200W/cm2,而同电压等级的CreeXHV-9模块的结壳热阻为0.468℃/W,表明该双面散热封装具有明显的热性能优势。为进一步优化双面散热封装器件的热性能,提出了柔性印刷电路板互连的平面封装结构,采用Cu-Mo-Cu(CMC)复合金属块满足绝缘要求。柔性PCB板既可以作为芯片上较小特征的互连,还可以代替传统的母线,缩短功率模块的电气回路长度减小寄生电感。深圳静态测试工业模块自动组装线