厦门智能人脸识别系统规格 停车场数据上传 速度快
价格:面议
本文对人脸识别技术的发展和人脸识别系统在铁路车站安检区域的应用进行了分析和研究。针对火车站存在密度大、难度大、安检时间短和光线环境复杂等较为的行业应用特点,提出一种应用于铁路车站的人脸识别系统解决方案,并在京沪高速铁路试点。该系统具有响应时间短、人脸采集率高和比对识别速度快等特点,在提高人脸识别率的同时降低误识率和漏识率。
据了解,初期的人脸识别技术对周围的光线环境敏感,人体面部的头发、饰物等遮挡物,人脸变老等因素也是人脸识别技术的不足所在。刘东培说,光电研究院研发的“人脸识别系统”,采用的“高维纹理特征统计概率算法”解决了这一问题,使设备对环境光线变化有着高适应性,并且设备识别过程不受被测者姿态、表情、妆容等表象特征的影响,同时具备人脸姿态矫正、深度学习功能。当人脸上下左右倾斜在40度以内时,对于人脸的变化,包括表情、胡须、眼镜、发型、年龄等,算法均具有良好的适应性,不影响识别准确度,这从根本上解决了人脸识别技术的实用性问题。在人脸测评试点单位测评中,该“人脸识别系统”录入测试人员基本信息后,测试人员以多种角度、各种光线亮度以及物品遮盖走过摄像头,但每一次都毫无例外地被该设备“捕捉”。该系统顺利通过了我国网、视频网、边界网三网联合测试,在密集、人车混合状态下综合动态识别率达到了83%,活体目标识别匹配度和识别概率都达到国内同类产品水平。
人脸识别技术是模式识别、图像处理、计算机视觉和认知科学等领域的一个极富挑战性的交叉课题,是近年来的一个研究热点。现有人脸识别算法众多,应用范围和特点各异,研究者希望通过一个算法测试系统快速了解现有算法,对比和研究新的算法;开发商希望通过一个测试平台选择一个适合自己应用领域的人脸识别算法开发商用产品。本致力于解决上述问题,开发了人脸识别算法综合测试系统,该系统集成了多种人脸识别算法并提供了添加新算法的开放接口。整个系统在VC++6.0和OpenCV3.1开发环境下实现。系统特点: A.集成了2种人脸检测算法,3种人脸识别算法,并为添加新算法提供了开放接口。 B.为系统设计的人脸信息数据库管理系统采用文档结构具有易于查询易于追加方便更新的特点,具有推广价值。 C.基于该系统设计了脆弱水印保护人脸图像数据库和保存额外信息方案,提高了安全性,丰富了人脸图像信息内容。 该研究在综合测试系统的基础上实现网络化人脸识别系统,为商业应用提供网络人脸识别原型系统。该系统中,网络传输模块只传输有用的人脸信息,与传统的系统传输压缩视频相比,大大的降低了数据传输量。 该研究以人脸识别算法综合测试系统为实验平台,以网络人脸识别系统为原型,提出了级联多模态并行计算人脸识别体系结构,该体系结构有良好的识别效率和鲁棒性。理想情况下该体系结构可以达到100%的识别率,而且良好的可扩展性使得识别速度几乎不受人脸信息数据库规模限制。
测试有局限性,苹果的iPhone X无法
不过,这种类型的测试有局限性。目前尚不清楚该面具是否在每次尝试中均有效,而且也没有一个系统完全依靠面部识别进行识别,比如在火车站,需要先出示,然后人脸识别系统才开始扫描。
虽然戴面具到了面部识别系统,但Kneron承认,这种欺诈不太可能广泛存在,因为实验中使用的面具是日本面具制造商生产的。但是这家位于圣地亚哥的公司指出,这种技术可能被用来欺名人或富人。