昆明人脸识别系统安装 深圳市经营性许可证 识别率高
价格:面议
近年来,伴随着网络技术及计算机技术的飞速发展,人们对信息的安全性、隐蔽性的要求越来越高,因此人体身份识别认证的需求也就越来越高。人脸识别是基于生物特征识别技术的身份认证中主要的方法之一,而且是人体身份识别方法中简单、方便的方法之一,也就受到越来越多的关注与研究。广义的人脸识别包括人脸检测、人脸表征和人脸识别。本文从人脸检测和人脸识别出发,针对其相关的工作展开讨论。首先,针对人脸图像的特点,讨论了人脸图像预处理和特征提取的相关知识,具体包括:人脸图像的灰度化、直方图以及直方图均衡化、边缘检测和小波分解。然后,详细介绍了Adaboost人脸检测算法和基于隐马尔可夫模型的人脸识别算法的基本原理及特点,并针对传统的Adaboost人脸检测算法,提出了一种增强型的Adaboost人脸检测算法,并对两种算法进行了比较。实验结果表明,本文提出的算法性能更好,人脸正确检测率和识别率都有了一定的提高。后,将本文提出的增强型Adaboost人脸检测算法与HMM人脸识别算法结合起来,设计并实现了一个人脸识别软件系统,并结合已有的人脸数据库和实验新建采集的人脸图像,对系统进行了实验仿真,
随着人脸识别技术的快速进步以及市场应用需求的凸显以及资本的热捧,人脸识别在近一两年特别火热。人脸识别技术在应用上也有了很大的突破,不再局限于考勤、门禁行业的简单应用,目前随着技术的进一步成熟和社会认同度的提高,其广泛应用于金融、司法、、、边检、、航天、电力、工厂、及众多企事业单位等领域。本文将侧重从安防层面来解读人脸识别在行业的应用。
研究基于人脸识别的课堂考勤系统,借助信息技术,以人脸识别为手段,彻底摒弃传统课堂考勤中人工统计管理的落后方式,克服不规范的考勤行为,解决学校以往考勤管理工作中出现的问题,为学校的考勤制度实施提供科学的依据。
本主要工作及应用创新如下:
(1)提出了基于稀疏表示和网络相结合的人脸识别算法。针对人脸识别过程中识别速度较慢的问题,依据压缩感知理论,利用小波变换对图像进行稀疏化处理。然后采用改进BP人工网络对图像进行训练。采用较少的元素表示人脸图像,不仅能对人脸图像进行降维,还能滤去局部光照、表情细节以及其他面部部件引入的高频干扰信息,突出人脸的主要特征,得到适合于计算机识别的低维图像,提高了人脸识别速度。
(2)设计了完整的基于人脸识别的学生课堂考勤系统。通过摄像头采集人脸图像,然后对人脸图进行预处理,并对人脸进行标定,分割出人脸图像;采用基于稀疏表示和网络相结合的人脸识别算法,进行人脸识别,然后把识别结果信息保存到数据库中,完成学生课堂考勤操作。
(3)设计并开发了基于C/S和B/S混合体系结构的学生课堂考勤系统。人脸识别采用C/S模式开发,考勤信息管理的设置与查询采用B/S模式开发。数据库服务器主要为考勤资料和考勤数据的存取提供服务。Web服务器为请假管理、考勤数据的查询和输出提供服务。学生可以通过网络查询个人的考勤情况,不受环境限制。
随着高科技信息技术的快速发展,人脸识别技术逐渐往市场化、产品化的方向发展。人脸识别技术的类型也越来越多,如基于肤色的人脸识别技术、基于点位的人脸识别技术、基于几何特征的人脸识别技术等等,这几种人脸识别技术在工作原理有着一定的差异,应用范围也各不相同。本文主要就人脸识别技术的现状和类型进行分析,并对其发展趋势进行探讨。