行内人都知道,凸轮分割器所实现是固定工位的间歇传动,而伺服电机却可以按实际的使用需求,实现任意点停止的定位,那么为什么却偏爱于凸轮分割器呢,想要了解这个问题,需要弄懂分割器与伺服电机的区别。
凸轮分割器,也叫间歇分割器。它是一种高精度的回转装置,有较高的回转重复定位精度,它的结构包含入力凸轮、出力转塔,箱体等结构,运动的原理,是在驱动源的作用下,由入力凸轮机构带动出力转塔,实现分度运动,由于凸轮的结构表面主要是较复杂的正弦加工曲面,当它与转塔的滚子凸轮接触后,实现了动停的机械动作。所以说,分割器所实现的间歇运动完全是由机械完成的,它的稳定性是其它任何非机械的设备所不及的。
伺服电机是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具**电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。直流伺服需要电刷换向,使用的速度受限制,具有附加阻力,易产生磨损微料,而交流伺服控制较复杂,驱动器参数需要现场调整 PID 参数,电子线路较复杂。
分割器与伺服从扭矩上看,凸轮分割器要大于伺服电机,当然,在不需要大扭矩及较高精度的情况下,还是伺服占据一定的优势。成本方面伺服的要**伺服电机,使用的稳定性上,凸轮分割器要好于伺服电机,具体的使用,要看自动化系统的实际选型需求,当然,有部分有经验的会取分割器与伺服电机之所长,由伺服电机来带自动分割器,主要是要应用了分割器的高速稳定性和伺服的精准定位。
凸轮分割器驱动角的选定,驱动角是凸轮分割器的一个重要的参数,这怎样选择分割器的驱动角度呢?在这里简单的介绍一下。首先讲两个概念驱动角和停止角。
驱动角又名凸轮分度角,入力轴旋转角要求执行的一次分度运转,角度越大运转越平稳,相反角度越小凸轮冲击越大;
停止角:当出力轴固定时,入力轴旋转的角度,此角度和驱动角的总和为360度。
驱动角度这个重要的参数,大多客户对其的选定不明确,不清楚它到底的是什么,将驱动角度和等分角度混在一起。
驱动角度是每个工位中动、停的时间比例。在凸轮分割器中每个工位都有动、停这样的动作,我们称为分割器运动的一个周期。在自动化设备的设计过程中,完成零件上某道工序需要分割器是停止不动的,当完成这道工序后我们需要分割器转动到下一个位置。这就是停止时间和驱动时间的确定。比如:驱动时间是1秒,停止时间为3秒,驱动时间/停止时间=1/3,驱动角度为90度。驱动时间是1秒,停止时间为3秒,驱动时间/停止时间=1/2,凸轮分割器驱动角度为120度公式为:360/驱动时间和停止时间比例之和=驱动角度。
等分角度就是客户设计时要求的工位数,比如设计时要求的工位数是2工位,那么等分角度就是180度。工位数是3,等分角度就是120度。工位数是4,等分角度就是90度。依此类推,公式为:360/工位数=等分角度。
凸轮分割器的驱动方式有很多种,在选型时可以根据实际需求设置驱动方式,如空间,精度等条件,那么具体的凸轮分割器分以下两种方式:
1、直接传动。
2、间接传动。间接传动应尽量避免出现反向冲击。
与分割器输出端相连接的结构有下述几种:
1、与轴通过法兰或套对接。
2、轴孔配合通过键连接。
3、法兰之间的连接。
由于输出的间歇性,由静止到运动,由运动到静止,惯性力大。再加上连接件的配合间隙,往往很容易在输出端与连接件之间产生松动。造成输出传动件的前冲或滞后,产生振动。这样不仅降低了输出精度,而且会严重地破坏分割器及其内部的凸轮及滚针轴承。
在此,要注意以下几点:
1、孔、轴配合间隙不能过大,键连接不能太松。
2、轴与轴对接,法兰之间连接不能偏心或偏斜,以保证同轴度。
3、法兰连接加注销钉,并用螺栓拧紧。
分割器的间歇式功能应用于多工位圆盘机,间歇的动停原理是由分割器自身的工作原理决定的,那么,动停的驱动源来自于电机,而控制指令则是由PLC等控制程序发出的。
分割器入力轴上安装感应开关,由感应开关将信号传递给PLC系统,常用的感应开关与信号凸轮组合安装,成为一个感应系统,信号凸轮及感应装置常用的有如下两类。
1.薄片式的感应凸轮与U形感应开关组合,信号凸轮的角度与入力凸轮的驱动角度是一致的,当信号凸轮薄片通过U形开关时,分割器出力轴处于分割也就是运动的状态,反之,则处于静止状态。
2.圆柱式的感应开关与较厚边缘的信号凸轮组合,这种方式也叫做接触式的感应开关,由于信号凸轮的边缘较厚,光感的作用把信号向PLC等控制系统传递,由控制系统对信号进行分析再向驱动源发出控制的信号。