金属分析光谱仪金属光谱仪
价格:150000.00起
产品规格:
产品数量:
包装说明:
关 键 词:金属分析光谱仪金属光谱仪
行 业:仪器仪表 光学仪器 光谱仪
发布时间:2022-06-19
直读光谱仪技术优势
全谱检测全面测试各种金属和元素
基于CCD检测器全谱测试技术,全面测试各种金属中元素的谱线,方便实现多基体、多元素的测试。
的测试方案
长期测试技术服务的积淀,天瑞仪器为钢铁、有色金属材料分析用户提供成熟的测试方案。
测试方案采用针对材料元素含量分类的分析程序,满足用户各类常见测试需求。
分析程序由原厂采用国际、国家标准样品校准,经仪器软拟合、校正。
用户只需采用原厂配置少量标准化样品即可完成日常维护,无需购买大量制作分析程序的标准样品。
国际供应商提供核心部件
光谱色散元件---光栅由德国Zeiss制造,保证优异的光谱分辨能力。
光谱检测器---高性能CCD由日本滨松Hamamatsu制造,确保谱线检测灵敏、噪声低。
的光室真空系统
光室真空腔体经精密设计和加工,密闭性能优异,为光路提供的高真空环境。
真空泵启动时间和次数少,电力消耗少,更好保持光室清洁。
传统的光谱检测系统为单色仪家光电倍增管(PMT)。20世纪70年代以来,人们欲利用光电二级管阵列(SPDA)等光电传感器以建立三维光谱图,并发展相应的处理技术。SPDA不仅能获得某一波段范围内的检测信息,还具有灵活的积分能力,但是它的灵敏度和动态范围不及PMT,而且噪声较大,线性范围窄,暗电流也大,而CCD却弥补了这些缺点。
CCD具有与光谱仪器密切相关的一些特性:
(1)灵敏度高,噪声低。CCD器件具有很高的量子效率,至少为10%,可达90%以上。它的电荷转移率几乎达,它在低温下工作时几乎无暗电流,噪声几乎接近于零,的CCD器件,已经实现了在常温下具有很高的信噪比,低的暗电流,完全满足了仪器在常温及微量分析上的要求,上述优点使CCD器件的灵敏度超过其他探测器(如PMT何SPDA),检测下限达pg级甚至fg级。
(2)光谱范围宽(200~1050nm)。在可见光区(400~500nm)量子效率可高达90%,在远紫外区(200nm)和近红外(100nm)间,量子效率至少为10%,在100~1100nm宽的光谱区域,CCD都有很高的量子效率,而大多数的发射、吸收和散射的光谱仪器这区域工作,因此CCD成为各类光谱仪器的理想探测器。
(3)动态线性响应范围宽,达10个数量级。CCD具有很宽的响应范围和理想的响应线性,达10个数量级(10⁵-106),而且在整个动态响应范围内,都能保持线性响应,这对光谱定量分析具有特别意义。
(4)几何尺寸稳定,耐过度曝光。CCD经长时间运转,其几何性能、热性能和电性能均很稳定,不怕过度曝光,因此比PMT结实耐用。
(5)可以同时多道采样,得到波长-强度-时间的三维谱线图,与光电阴器件联用,可观察X射线图像。
密闭的光学室可以避免灰尘、光线的干扰
直读光谱仪检定过程中常见问题的原因分析
试样激发处呈白色状,黑度低或无黑晕
在直读光谱仪的检定过程中,正常的激发斑点是,中心呈麻点状,外圈有黑晕。但有时会出现试样激发处呈白色状,无黑晕,这是样品激发不完全的状况。原因可能有以下几种:
1、氩气的纯度不达标
氩气的纯度是试样激发是否正常的重要因素。由于氧对140.0~195.0nm波长的光谱区域有强烈的吸收,样品在氩气氛围中激发,避免了在激发过程中的选择氧化,使放电状态稳定,有利于提高光谱分析的精密度。高纯氩作为火花室保护气的主体,其纯度高才会形成需要的“聚能放电”,否则就是所谓的“扩散放电”,引起不良的激发,使激发点呈白斑点或无激发点,强度降低,样品表面无侵蚀,很多元素不能有效激发,导致分析结果出现较大误差,尤其对分金属元素影响更大。样品的组织结构越复杂,对氩气的纯度要求就越严格。
综上所述,当出现激发不正常时,需重新确认氩气的纯度,必须保证其高于99.999%。
2、待测样品的表面处理不平滑、平整
由于试样表面的温度和粗细纹理,直接影响放电状态。粗细纹理不一致或磨样用力过大,造成试样表面氧化,激发困难。温度高时分析结果波动较大,精度也差;因此,磨削时应尽量保证试样端部与立式、卧式砂轮机切面垂直接触,磨出的试样才光滑平整,并能很好的遮盖住火花台激发孔,保证激发时氩气不从试样断面的间隙处漏掉。
3、分析间隙可能偏离,有可能轻微突出
检测激发分析电,看是否正常。激发能量不足也可能是一个原因。
直读光谱仪用户如何选择市场流通的标样
如何选择市场流通的标样呢?可以从以下几步实施:
1、先将用户要检测的样品材料进行分类,将不同材质的样品分成不同类别。
2、同类别的材料再按其基材和主要组份分类。
3、同基材的材料按照其主要组份进行归一化分类。
4、确认归一化的材料的组份差别控制在可容许范围内,即可选择该系列标样进行曲线的建立。
直读光谱仪分析的误差的性质及其产生的原因有哪些?
1。系统误差也叫可测误差,它是由于分析过程中某些经常发生的比较固定的原因所造成的,它是可以通过测量而确定的误差。通常系统误差偏向一方,或偏高,或偏低。例如光谱标样,经过足够多次测量,发现分析结果平均值与该标样证书上的含量值始终有一差距,这就产生一个固定误差即系统误差,系统误差可以看作是对测定值的校正值,它决定了测定结果的准确度。
2。偶然误差是一种无规律性的误差,又称不可测误差,或随机误差,它是由于某些偶然的因素(如测定环境的温度、湿度、振动、灰尘、油污、噪音、仪器性能等的微小的随机波动)所引起的,其性质是有时大,有时小,有时正,有时负,难以察觉,难以控制。它决定了测定结果的精密度。
3。过失误差是指分析人员工作中的操作失误所得到的结果,没有一定的规律可循,只能作为过失。不管造成过失误差的具体原因如何,只要确知存在过失误差,就将这一组测定值数据以异常值舍弃。