价格:面议
山东冠熙环保设备有限公司
联系人:李海伟
电话:15684302892
地址:山东省临朐县223省道与南环路交叉口往南2公里路西
几何模型建立与网格划分
计算模型采用掘进工作面4-72-5.6A 防爆防腐蚀的离心式通风机,小型离心风机价格,其主要参数:电机功率22 kW,转速2 930 r/min,流量10 122~25 736 m3/h,全压4 152~2 330 Pa。其主要由进风口、集流器、叶轮和蜗壳组成。
离心风机集流器中添加了米字形结构与环形挡环。风机结构复杂且叶片外形不规则,因此生成结构化网格比较困难,离心风机厂,相反非结构化网格适应能力强,在处理复杂结构时有利于网格的自适应。
因此离心风机采用四面体非结构化网格。使用ANSYS 软件中的CFD 软件进行网格划分,加米字形集流器模型网格数1 072 503,网格节点数184 910;普通圆弧形模型网格数1 296 832,网格节点数223 847。以离心风机在掘进工作面环境下的运行工况为依据,进行离心风机参数设置:流量取22 806.54 m3/h,流速取6.335 15 m/s, 质量流量取7.491 3 kg/s。把Pro/E 建立的几何模型导入Fluent 中并对几何模型的边界条件计算参数进行设定。其中入口类型采用速度进口,出口设为压力边界条件,本计算采用的样机是矿用式离心风机, 出口静压可以近似为0,蜗壳内壁及叶轮壁面粗糙度均取0.5,集流器、叶轮、蜗壳等各流体区域结合处的公共面采用interface边界类型面, 将叶片的压力面和吸力面以及叶轮前盘、后盘和转轴的内外表面一起定义为旋转壁面。环境压力为101 325 Pa,取粉尘流体密度ρ=1.225 kg/m3。计算时采用SIMPLE 压力速度耦合方法进行。
离心风机性能试验原理及其装置为了验证修正后数值计算模型的准确度,对原风机的不同工况气动性能试验。将修正前后数值计算模型预测原型机性能结果与试验值作对比分析,由数据可知,采用标准k-ε 模型预测的风机性能曲线较试验值存在一定误差,其较大误差值达9.5%,修正的k-ε 模型,各流量工况下离心风机出口静压计算值与试验值吻合,其性能曲线趋于重合,两者误差值明显减小,且较大误差降低至3%,充分验证了所采用的数值计算模型修正方法的可行性,同时为下文离心风机性能的准确度和可靠性预测提供支撑。设计原理分析原风机蜗壳内壁型线采用的是传统蜗壳型线设计方法,即不考虑壁面粘性摩擦的影响,气流动量矩保持不变,运用不等边基圆法绘制的近似阿基米德螺旋线。而实际流动过程中,气体粘性作用常导致其速度在过流断面上呈现的分布不均匀现象。
对于低速小型多翼离心风机而言,由于气体流道狭窄,受粘性作用的影响,小型离心风机,风机内壁面边界层分离加剧,经过叶轮加速的气体流速沿蜗壳径向方向逐渐减小,而在离心风机蜗壳出口处,由于同时受到蜗舌结构和蜗壳壁面的影响,其流速为管道流速度分布,受粘性作用的影响,蜗壳内流体于整个流道空间内呈现速度分布不均匀的现象,因此在实际流动过程中,流体动量矩并不是不变的,而是随流动的进行不断减小,故基于动量矩守恒定律设计的传统蜗壳型线存在动量修正的必要。改型设计方法由于气体粘性力无法通过简单的公式运算获得,且其大小受气体速度的影响,因此本文采用一种简单化的求解方法,即基于传统不等边基圆法,离心风机运用改进后的k-ε 模型对原风机进行数值模拟,设置如图8 所示的4 个监测截面,其方位角φ 分别为90°、180°、270°、360°。通过Fluent 后处理计算得出蜗壳壁面区域于以上4 个截面处所受粘性力大小Fν ,测量力矩中心至力原点距离R,由额定工况下风机总质量流量q 计算得单位质量流体所受黏性力矩平均值m FR / q。
因此,当离心风机产生振动故障现象时,首先必须从基础查找原因。基础因素主要是:
(1)混凝土基座结构设计有缺陷,基座强度和刚度不够;
(2)基础地质差,风机运行一段时间后,造成基础沉降或松动;
(3)混凝土基座材料不合格,浇筑不符合规范要求;
(4)地脚螺栓及垫铁的安装不当。实际中,常采用二次灌浆的方法将地脚螺栓进行固定定位,其施工、安装应严格执行规范要求,以确保质量。根据上述分析,基础因素引起风机振动的表征主要有:基础周围地坪有明显振动;基础与地坪或二次灌浆产生的结合面存在明显裂缝,垫铁或地脚螺栓松动,应注意,此类振动往往比较剧烈,严重时发生螺栓断裂,淄博离心风机,轴承座螺栓孔崩裂,直接造成轴承座报废;基础产生不均匀沉降,产生基座倾斜。离心风机处理措施:一是验算基础的质量是否符合要求,对于风机等旋转式设备,由于回转而产生的惯性力作用在基础上,为确保安全运行,则基础质量应等于10 倍的风机机组质量,不符合要求应采用加固加重措施;二是有松动的二次灌浆地脚螺栓应破除拔出,孔壁凿毛后重新浇筑混凝土固定地脚螺栓。二次灌浆应保湿养护7 天以上,混凝土强度达到设计强度后才能进行下一步的安装。二次灌浆的混凝土强度可提高一级,固定效果更佳。