影响增碳剂吸收率的主要因素
使用增碳剂的增碳操作过程包含溶解扩散操作过程和被氧化损耗操作过程。当渗碳剂粒度不同时,溶解扩散速度和被氧化损耗速度也不一样。化油器的吸收系数取决于化油器的溶解扩散速度和被氧化损失率的综合作用:一般化油器颗粒小,溶解速度快,损失率大;化油器颗粒大,溶解速度慢,损失率小。炭化剂粒度的选择与炉子直径和容量有关。一般情况下,炉的直径和容量较大,渗碳剂的粒径较大;反之,渗碳剂的粒径较小。1吨以内电热炉熔炼结晶石墨的粒度标准为0.5~2.5mm;1吨~3t电热炉熔炼结晶石墨的粒度标准为2.5~5mm;3t~10t电热炉熔炼结晶石墨的粒度标准为5.0~20mm;~1mm。
铁液搅拌对增碳剂吸收率的影响:
搅拌有利于碳的溶解和扩散,避免了漂浮在铁水表面的增碳剂的损失。在完全溶解之前,搅拌时间长并且吸收率高,搅拌还可以缩短增碳和保持时间,缩短生产周期,并避免灼伤高温金属中的合金元素。但是,如果搅拌时间过长,则不仅会很大地影响加热炉的使用寿命,而且还会使它溶解后铁水中的碳损失增加。因此,适当的铁水搅拌时间是确保它完全溶解的前提。
其中,石墨增碳剂固定碳,吸收率高,比同类吸收率快,炉壁无吸附,完全吸收,无残渣,吸收率高,硫含量低。吸收率更加明显,低硫,低氮的产品可以减少杂质含量,增加碳含量,并减少硫含量。
石墨化石油焦对冶炼有影响
铁水渗碳技术可以在冶炼过程中增加石墨核,特别是在电炉中。在冲天炉熔炼中加入碳化硅,还可以增加铁水长石墨晶核,减少铁水氧化。
碳化是防止或减少收缩倾向的措施。由于铁水凝固过程中的石墨化和膨胀,良好的石墨化会降低铁水的收缩倾向。
在高碳含量条件下,为了获得高强度灰铸铁铸件,熔炼工艺采用废钢和增碳剂,使铁水更加纯净,生产出高材料性能的铸件。熔炼时应使用没有污染的清洁材料,以避免泄漏或过量浮渣。
一般来说,普通石油焦的质量要求不高,生产的轻油产品也是高残炭值、高金属技术含量的低品质油品。只有通过二次加工的方法才能开发出合格的油品。但是天然石墨会在自然界出现,铸造行业人们也经常使用石墨,因为人造石墨有很多优点,比如人造石墨的孔隙率、含碳量、石墨化程度等,更能满足要求。同时,石油焦主要用于生产石墨。
煤质增碳剂使用方法:
使用5吨以上的电炉,原料单一稳定,我们推荐分散加入法。根据含碳量的要求按料配比,将增碳剂与金属炉料随各批料一同加入电炉中下部位,增碳剂在融化时不要打渣,否则易裹在废渣里,影响碳的吸收。
使用3吨左右中频感应电炉,原料单一稳定,我们推荐集中加入法,在炉内先融化或剩余少量铁水时,将需配加的增碳剂一次性加在铁水表面,并立即加金属炉料,将增碳剂全部压入铁水中,使增碳剂与铁水充分接触。
使用小型中频电炉,原料加有生铁等高碳物质的,我们推荐增碳剂微调。钢铁水溶化后,调整碳分,可以加在钢铁水表面,通过电炉熔炼时钢铁水的漩涡搅拌或人工搅拌使本产品溶解吸收。
含碳量高的增碳剂的原因有哪些呢?
在铸铁电炉的冶炼过程中,废钢和石墨化增碳剂现在更常用,但是在使用高质量的产品时,每个工厂都有不同的选择,即使用优良的产品,包括煅烧的石油焦和石墨碎,但许多工厂还使用精煤产品。
增碳剂的质量取决于石墨化程度,优良产品包含95-98%的石墨碳,0.02-0.05%的硫和100-200 ppm的氮。精煤产品的碳含量为80-90%,硫含量高于0.5%,氮含量为500-4000ppm。另外,通过添加粘土等将在碳化硅的生产或其他生产方法中生产的石墨细粉或煤粉压缩成颗粒状石墨颗粒,用其他生产方法生产的细石墨粉和煤粉的质量难以区分。这种产品的质量难以识别,并且难以尽快建立标准和测试方法。
增碳剂主要有哪些作用?
增碳剂可有效提升钢材质量
焦粉作为炼钢原材料因灰分高达10%往往会影响钢材质量,增碳剂含灰分较低且增碳效果好有效提升钢材质量
增碳剂具有补充碳含量损耗的作用
在炼钢过程中经常会出现碳元素损耗的情况发生,这时使用增碳剂可以有效补充碳含量提升钢材硬度和耐磨性能!
增碳剂可有效降低铸造成本
使用废钢和增碳剂来代替铸造较昂贵的原材料生铁,可实现废物再利用有效降低铸造成本提升厂家效益!