东莞市宇硕新材料科技有限公司
联系人:何亚飞
电话:13620046998
地址:广东省东莞市常平镇白花沥村
产品规格:
产品数量:
包装说明:
关 键 词:常州EMI电磁屏蔽PP
行 业:塑料 通用/工程塑料 工程塑料
发布时间:2022-03-09
品名:PP炭黑导电
材质:PP炭黑级
型号:YSKB-A300
表面电阻率:10E1-10E5Ω
颜色:黑色
成型工艺:注塑、挤出级,吹塑,吸塑级
用途:周转箱,卡板,中空板,托盘,吸塑盒,脚轮,片材,板材,管材等产品
针对聚在低温下的抗冲击性能差、耐候性不佳、表面装饰性差以及在电、磁、光、热、燃烧等方面的功能性与实际需要的差距,对聚加以改性,成为当前塑料加工发展为活跃的,取得成果为丰盛的领域。 [11]
PP化学改性
通过共聚改性、交联改性、接技改性、添加成核剂等使PP(聚)高分子组分与大分子结构或晶体构型发生改变而提高其机械性能、耐热性、耐老化性等性能,提升其综合性能、扩大其应用领域。 [12]
(1)共聚改性
共聚改性是采用茂金属等催化剂在单体合成阶段进行的改性。当单体聚合时,加入的烯烃类单体与之进行共聚,聚合得到无规共聚物、嵌段共聚物和交替共聚物等,均聚PP的机械性能、透明性和加工流动性都得以提升。茂金属催化剂形成的络合物是以不规则形状受到一定限制的过渡状态作为单一活性中心,达到控制相对分子质量及其分布、共聚单体含量、主链上的分布和高聚物晶型结构。 [12]
(2)接枝改性
PP(聚)树脂分子呈非极性结晶型线型结构,表面活性低,无极性。存在表面印刷性不良;涂布粘接不良;与极性高聚物难以共混;与极性增强纤维、填料难以相容的缺点。接技改性是向其大分子链上引入极性基团,实现改善PP的共混性、相容性和粘结性,达到克服难共混、难相容与难粘接的缺点。在引发剂作用下,熔融混炼时接技单体进行接技反应,引发剂在加热熔融受热时分解产生活性游离基,当活性游离基遇到不饱和羧酸单体时,促使不饱和羧酸单体不稳定键打开后与PP活性游离基反应形成接技游离基,随后通过分子链转移反应而终止。PP常见的接枝改性方法有:熔融法、溶液法、固相法、悬浮法等。接枝改性后的PP分子链中原子被取代而呈现较强极性,这些极性基团使得PP相容性增强,耐热性、机械性能大幅提升。 [12]
(3)交联改性
交联改性主要是把线型或者是枝状的聚合物通过交联的方法改性成为网状结构的聚合物。PP(聚)交联改性可以使其力学性能、耐热性以及形态稳定性得到改善,成型周期缩短。聚交联改性主要方法有化学交联改性、辐射交联改性,它们主要区别在于交联机理不同、活性源不同;化学交联改性是通过添加交联助剂来实现聚改性,辐射交联改性主要是通过强辐射或强光来实现,由于辐射交联改性对PP厚度要求使得该法普及困难。目前接枝交联法由于其能够制备出性能优良的材料而发展迅速,接枝交联法生产的PP强度高、耐热性好、熔体强度高、化学稳定性强、耐腐蚀性能好。
中国于1962年开始研究聚生产工艺。 [4] 从20世纪80年始,聚在中国发展迅速。我国引进了一些的关于聚生产技术和生产设备,先后建立了燕山、扬子、辽阳等一批大中型聚生产设施,各地也兴建了大量小型散装聚生产设施,并对缓解供需矛盾起到了一定的作用。生产规模的大幅度增加,促使我国聚树脂生产进入了快速发展阶段 [7] 。2012年,我国PP生产能力达到1296.7万t。 [8] 2015年,我国PP产能为2013万吨/年。
PP物理改性
在混合、混炼过程中向PP(聚)基体中添加**或无机助剂等得到性能优异的PP复合材料,主要包括:填充改性、共混改性等。 [12]
(1)填充改性
在PP成型过程中,将盐、碳酸钙、二氧化硅、纤维素、玻璃纤维等填料填充于聚合物中,达到PP耐热性提高、成本降低、刚性提高、成型收缩率降低等,但PP冲击强度、伸长率也会随之降低。玻璃纤维作为一种性能优异的无机非金属晶须,价格低、绝缘好、耐热强、抗腐好,机械强度高,应用比较普遍,经玻璃纤维填充改性的PP性能得到明显的改善,但是玻纤添加量达到30%左右时,材料的机械性能才能有明显的提高;添加量过大时会导致部分玻璃纤维得不到充分浸渍,使聚合物基体与玻璃纤维界面的结合性能变差,导致复合材料的力学强度下降,并且随着玻璃纤维添加量的增加复合材料的流动性能降低,导致PP成型加工工艺性能困难。 [12]
(2)共混改性
将PP(聚)与聚、工程塑料、热塑性弹性体或橡胶等共混,达到提升PP性能的改性方法。共混改性是在密炼机、开炼机、挤出机等加工设备中完成,工艺过程易调控,生产周期短、耗资少,可改进PP的着色性、加工性、抗静电性、耐冲击性等多种性能。聚合物共混可以综合各组分的**性能,弥补各组分性能上的不足,共混物综合性能明显提升,但共混改性PP的耐低温性、耐老化性仍然不甚理想。共混改性时,剪切力可能导致一部分大分子链被切断形成自由基并形成接枝或嵌段共聚物,这些新的共聚物也可以有效的对PP起到增容作用。 [12]
PP改性技术使得复合材料机械性能得到成倍的提升,较大的拓展了PP应用领域,提高了制品的性价比,推动了PP的工程化进程,也使得PP从通用塑料拓展应用于工程塑料领域,大大拓宽了它的应用范围。近年,PP改性技术的研究发展迅速,越来越多新型技术应用于PP改性,PP综合性能提升明显、应用领域不断扩大,发展前景十分广阔。 [12]
(3)增强改性
纤维状材料加入到塑料中,可以显著提高塑料材料的强度,故称之为增强改性。大径厚比的材料可以显著提高塑料材料的弯曲模量(刚性),也可以将其称之为增强改性。 [11]
PP(聚)的增强改性中应用的增强材料主要是玻璃纤维及其制品,此外还有碳纤维、**纤维、硼纤维、晶须等。玻璃纤维增强PP中,用得较多的玻璃纤维为无碱玻璃纤维和中碱玻璃纤维,其中无碱玻璃纤维的用量。玻纤的直径控制在6~15μm范围内,玻纤的长度必须保证在0.25~0.76mm,这样既能够保证制品性能,又能使玻纤分散良好。一般认为制品中的玻纤长度大于0.2 mm时才有改性效果。玻纤含量(质量分数)在10%~30%为佳,**过40%时性能下降。另外,添加**类偶联剂能使玻纤和PP两者形成良好界面,提高复合体系的弯曲模量、硬度、负荷变形温度,特别是尺寸稳定性。 [13]
由于玻纤增强PP可以提高机械强度和耐热性,且玻纤增强PP的耐水蒸汽性、耐化学腐蚀性和耐蠕变性都很好,在许多场合可以作为工程塑料使用,如风扇叶片、暖风机格栅、叶轮泵、灯罩、电炉和加热器外壳等等。 [11]
聚在生产数量迅速发展的同时,也在性能上不断出新,使其应用的广度和深度不断变化,近年来或者通过在聚合反应时加以改进,或者在聚合后造粒时采取措施,有一些更具特性能的聚新的品种问世,如透明聚、高熔体强度聚等。 [11]
透明改性
PP(聚)的结晶是造成不透明的主要原因,利用急冷冻结PP的结晶趋向,可以得到透明的薄膜,但有一定壁厚的制品,因热传导需要时间,芯层不可能迅速被冷却冻结,因此对于有一定厚度的制品不能指望用急冷的办法提高透明度,必须从PP的结晶规律和影响因素入手。 [11]
经一定技术手段得到的改性PP,可具有优良的透明性和表面光泽度,甚至可以和典型的透明塑料(如PET、PVC、PS等)相媲美。透明PP更为优越的是热变形温度高,一般可**110℃,有的甚至可达135℃,而上述三种透明塑料的热变形温度都低于90℃。由于透明PP的性能优势明显,近年来在**都得以迅速发展,应用领域从家庭日用品到器械,从包装用品到耐热器皿(微波炉加热用),大量使用。 [11]
PP的透明性提高可通过以下三种途径:
(1)采用茂金属催化剂聚合出具有透明性的PP;
(2)通过无规共聚得到透明性PP;
(3)在普通聚中加入透明改性剂(主要是成核剂)提高其透明性。