河南亚兴精锻股份有限公司
联系人:班经理
电话:15188359901
地址:河南省焦作武陟县产业集聚区东区
一体式全封闭高强度侧围加强板冲压工艺研究
导读:本文主要介绍了某车型不拼焊一体式全封闭侧围加强板,阐述了其在工艺、成本、生产稳定性、余废料利用等方面的优越性,既提升了整车材料利用率,又推动了一体式全封闭高强板侧围加强板的应用。
全封闭侧围加强板具有提升白车身材料利用率,车身安全强度高,尺寸稳定性高,匹配关系简单,生产效率高,车身轻的优点。经过几个车型的应用,虽然全封闭侧围加强板优点众多,但是其拼焊成本高、生产稳定性差的问题一直是困扰行业的难题。本文介绍的一体式全封闭侧围加强板,就很好的克服了这两个问题,具有一定的推广应用价值。
侧围加强板
传统的侧围加强板是由几个简单的高强板组合拼接而成,这种方式的侧围加强板总成尺寸稳定性较低,降低了汽车白车身的尺寸合格率。
整体封闭结构的侧围加强板(图1),相对于多个小零件点焊合成的侧围加强板总成具有整车减重、总成强度高、尺寸相对稳定、板料成本低、大幅度降低生产设备总吨位、减少工装数量和制造成本、降低生产成本、减少生产准备的匹配时间等优势。
pagenumber_ebook=40,pagenumber_book=47
图1 整体式拼焊加强板
整体式拼焊加强板在冲压成形过程中,**问题有两个:⑴激光拼焊焊缝端头引起的开裂问题,导致尺寸稳定性较差、废品率高。⑵生产中焊缝区域模具镀层磨损严重问题。而采用不拼焊的一体式封闭侧围加强板很好的了这两个问题。
产品特性
某车型侧围加强板采用不拼焊的一体式全封闭侧围加强板,如图2所示。
pagenumber_ebook=41,pagenumber_book=48
图2 一体式全封闭加强板
如图3所示,零件板材尺寸大小为1.6mm×1475mm×1830mm,重量为37.97kg,材质为TRIP600。
pagenumber_ebook=41,pagenumber_book=48
图3 零件板材示意图
工艺分析
该产品工序内容如图4所示。
pagenumber_ebook=41,pagenumber_book=48
图4 工序流程图
通过使用计算机模拟技术,识别产品开裂、起皱、回弹状态,对制件进行模拟分析,分析图如图5所示。
pagenumber_ebook=42,pagenumber_book=49
图5 CAE模拟分析效果图
余废料利用
一体式全封闭加强板在落料过程中,门洞废料尺寸较大,二次利用价值高,如表1所示。
表1 废料参数
pagenumber_ebook=42,pagenumber_book=49
如图6所示,根据门洞废料的大小和形状,确定落料时门洞废料的收集方式,通过与相同的材料、以及类似材料的制件进行对比,将侧围加强板、侧围内板综合评价,确定了门洞废料的利用方案:门洞废料收集用于侧围内板T02。此方案得到产品试验认可,单车降成本56.8元。
pagenumber_ebook=42,pagenumber_book=49
图6 废料利用
板料性能测试机分析
前期通过模拟分析,一体式全封闭侧围加强板,需采购材质为TRIP600、厚度为1.6mm、卷宽为1570mm的卷料,属于**宽类钢板。经过与国内外钢材生产厂家技术沟通后,目前正在试验阶段,在此项目调试阶段可以满足需求,如表2所示。
表2 模拟数据表及拉伸试验报告
pagenumber_ebook=43,pagenumber_book=50
pagenumber_ebook=43,pagenumber_book=50
成本分析
在产品设计初期,关于侧围加强板产品设计,采用何种方式,我们也进行了充分论证,关键点是设计为整体式还是拼焊式,为此我们进行了详细的分析和论证,主要涉及下面三个方案:⑴不等厚激光拼焊全封闭结构。⑵等厚激光拼焊全封闭结构。⑶一体式全封闭结构。
三种方案在材料利用率、钢加成本、拼焊成本、开卷落料成本、制件调试难度、预计冲压废品、模具国产化难易程度、尺寸精度控制、投资成本等方面进行对比,如表3所示。
表3 侧围加强板不同拼焊方式对比估算表
pagenumber_ebook=44,pagenumber_book=51
通过综合对比,一体式全封闭侧围加强板投资成本低于其他方案。
实施效果
该侧围加强板量产以来,各项性能指标均达到或**出项目目标。
⑴板料成本:单车板料成本165元,较以往车型降低33%。
⑵生产效率:预计生产效率5次/分,实际单批次生产效率达到5.63次/分,较预期提升近12.6%。
⑶生产废品率:预计废品率控制在0.3%以下,实际废品率在0.054%。
⑷余废料利用:达成预计效果,单车降成本56.8元。
总结
整体高强度封闭结构拼焊板冲压生产,存在成形激光拼焊焊缝端头引起的开裂问题,导致尺寸稳定性较差、废品率高,这些问题在已经量产的车型中不同程度地制约了整体结构侧围加强板优势的展现。不拼焊的一体式全封闭侧围加强板可以完避免这个问题,同时生产成本大幅降低。
结束语
⑴本项目通过对某车型侧围加强板的工艺结构进行优化,消除以往车型生产稳定性差的问题,同时通过余废料利用,提升了整车材料利用率,保证了侧围加强板的工艺性,大大的推动了一体式全封闭加强板的应用,为**宽TR类高强钢的应用提供了数据支撑。
⑵从长远来看,提高白车身尺寸精度、提高高强板应用率是个永恒不变的话题,产品质量决定了产品的竞争力。
⑶从内部来看,能够快速提高工艺人员生准的水平,提高工艺人员对零件、材料的掌握能力,提高工艺人员对产品质量的控制能力;从横向来看,行业内均能够进行推广,提高企业整体实力。
激光焊接技术在电镀模具的应用
随着模具电镀(表面镀铬)技术的日趋成熟,为了防止制件拉毛缺陷,拉延模具表面进行电镀已经成为常态化,目前汽车覆盖件主机厂60%以上的模具在调试稳定后都需要电镀。电镀后的拉延模一旦损伤,以传统的方法修复成本较高,维修周期长。本文介绍了一种针对电镀拉延模具简单快捷、维修成本低的修复方法—激光焊接修复法(本文使用的激光焊机型号为ALM200),可以有效降低维修成本及维修时间。
传统电镀模具修复方法及优缺点
模具镀铬技术是在模具工作表面电镀上一层金属铬,铬层具有很高的硬度,其硬度一般可达到64HRC以上、且表面粗糙度小,使得电镀模有很好的耐磨性。同时镀铬层也具有较好的耐热性。然而电镀模具一旦损伤再修复及其困难。传统电镀模具损伤后的修复方法有两种。
一种是直接光顺模具或者用气焊烤起模具损伤部位再研修。此种方法的维修周期短,一般根据模具损伤面及损伤部位,在几十分钟到几个小时内即可完成。但直接光顺模具,电镀层会遭到进一步的破坏(图1),在镀层与非镀层交汇处制件成形后往往会产生质量缺陷。另外气焊的温度能够达到3200℃,模具电镀层在烘烤后必然会遭到破坏(图2)。
另一种方法是先脱镀再修复,修复完成后再电镀。其优点是可以彻底消除制件质量缺陷保正模具的成形的稳定性,但是脱镀后重新电镀的维修成本高。以普通车型翼子板为例,脱镀后重新电镀一次大约需要3~4万元,而且此方法的维修周期长,一个脱镀电镀加维修的周期至少需要3到5天时间,维修期间需要充分考虑模具的产量及生产周期。
pagenumber_ebook=18,pagenumber_book=25
图1 电镀层光顺后损坏
pagenumber_ebook=18,pagenumber_book=25
图2 电镀层气焊烘烤后损坏
传统方法修复时往往涉及到烧焊,普通焊接温度较高,而且辐射范围大,会较大的破坏电镀层。据铁碳合金相图可知,铸铁的熔化温度至少在1148℃,远**电镀层的损坏温度(700℃),而手工氩弧焊的电弧温度可以达到10000℃以上,手工电焊的电弧温度也在6000℃~8000℃,这样电镀层周围很大区域都会受到电弧的热影响。普通焊接的焊接层的余量不易控制,较大余量较易造成在研修过程中电镀层二次损伤(图3)。
pagenumber_ebook=19,pagenumber_book=26
图3 镀层烧焊边缘损坏
激光焊接
目前主机厂常用焊接设备(手工氩弧焊与手工电弧焊)热量高,并且热辐射范围大是导致修复电镀拉延模具失败的根本原因,那么要想更加有效的修复电镀拉延模具,就需要有一种好的焊接方法,热量低并且热影响范围小。
通过对比和多次实验,发现激光焊具两个优点:⑴热量小,焊接边缘不易咬边;⑵焊接精准,烧焊层的厚度易于控制,目前激光焊设备焊层可控制在0.2~0.6mm。
图4为型号ALM200的激光焊机。图5为该焊机焊接时的照片。激光焊接是利用高能量密度的激光束作为热源的一种焊接方法。焊接过程中热量从表面逐渐传递到内部,使工件熔化形成熔池,再向熔池内添加焊丝,以形成激光焊缝。
pagenumber_ebook=19,pagenumber_book=26
图4 ALM200激光焊机
pagenumber_ebook=19,pagenumber_book=26
图5 ALM200焊接照片
ALM200激光焊机的使用方法
⑴调节立体显微镜。1)调节目镜镜筒以配合眼睛瞳孔间的距离。2)定位眼睛观察位置。3)调整眼睛接触点。4)调整视力矫正设定。
⑵开启焊机。等待直到准备好的绿色指示灯点亮。
⑶准备工作。1)移动激光焊机接近工作位置。2)定位光标到焊接位置。
⑷焊接。1)打开激光安全闸门。2)设定所需的激光参数数值。3)将氩气的开关靠近激光焦点合适的位置上。
⑸关闭焊机。1)向左方向转动主电源开关,使之转动到关断位置。2)关闭氩气气瓶上的阀门。
ALM200激光焊机参数的选定
结合实际操作,总结经验参数选定方案如下。
⑴焊丝直径。焊丝直径的选择与所焊接的零件形状有关。一般在焊接较大面积的焊接堆填,可以用直径0.7mm或0.6mm的焊丝。一般的边线和较精细的平面,可以用直径0.4mm或0.5mm的焊丝。一般精细的边线和精细尖角,可以用直径0.2mm或0.3mm的焊丝。焊丝的直径一般不应**过0.8mm。
⑵光束直径。光束直径的选择与所选用的焊丝直径有关,一般为焊丝直径的1.2~2倍,在此范围内看所需焊补零件的部位情况而定,如平面大面积的堆填,可以用到2倍。尖角位置的补焊,可以用1.2倍再取整调节出激光束大小的值。较为常用的为1.4或1.5倍左右。如0.3mm的焊丝,用直径0.4mm,直径0.5mm,直径0.6mm的光束,而较常用的为0.5mm的光束直径。
⑶激光脉冲持续时间。一般使用的时间长度为4ms到7ms之间为宜,较常用的参数为5ms左右。
⑷激光产生频率。激光产生频率是焊接速度的参数,其与焊接操作者的熟练程度、所焊接零件焊接难易程度及复杂程度有关。焊接操作者的熟练程度越高,对焊接技术把握越好,就可以使用较高的焊接频率以提高速度,提高工作效率。反之,则需要使用较低的焊接频率,以把握好焊接的质量和可靠性。
⑸焊接脉冲波形。该参数有4种,S-,S1,S2,S3,其中S-的波形是不可变动的固定方波,S1,S2,S3是用户自定义的波形,一般情况下选用S-。
⑹焊机的焊接电压。在以上参数确定后,一般情况下,焊丝直径大,电压需调高,焊丝直径小,电压需调低。激光光束直径大,电压需调高,激光光束直径小,电压需调低。激光激励时间长,电压需稍低,激光激励时间短,电压需稍高。波形样式中波形削减越多,电压在与方波情况相比则需越高。焊接工件焊点面积大,热量散失多,电压就需调高。焊接工件越精细,尖角,锐边的情况,电压就需稍调低。
⑺氩气的调节。一般情况下,氩气的流量可以控制在每分钟5升到7升,在焊接工件部位复杂,喷气角度不方便调,需使用两支喷嘴时,可适当加大流量,一般也不**过每分钟12升。
激光焊接修复实例
以下以某车型前门外板拉延凸模为例,介绍激光焊接的具体修复。
⑴损坏情况。生产过程中模具垫异物损坏,损坏深度约0.2mm,损坏区域直径约为10mm,如图6所示。
⑵焊接方法。本次焊接使用直径为0.4mm的激光焊焊丝,烧焊一层即可达到烧焊高度要求,图7为焊接后的状态,烧焊边缘电镀层没有损坏,烧焊边缘没有咬口。
⑶研修方法。
pagenumber_ebook=21,pagenumber_book=28
图6 模具损伤照片
1)在研磨量较大时根据使用工具的种类选用砂轮机或者角磨机,研修过程中要用研板和刀口尺检查研修后的型面(图8),研修剩余大约0.02mm的余量。
2)用小油石(油石颗粒密度120左右)去除烧焊处的高点(图9),并用研板和刀口尺检查,研修至剩余大约0.005mm的余量。
pagenumber_ebook=21,pagenumber_book=28
图7 焊接后效果图
pagenumber_ebook=21,pagenumber_book=28
图8 研板刀口检查
pagenumber_ebook=21,pagenumber_book=28
图9 小油石去高点
表1 实际工作中总结的焊接参数(根据实际情况可微量调整)
pagenumber_ebook=22,pagenumber_book=29
pagenumber_ebook=22,pagenumber_book=29
图10 大油石光顺
3)用大油石(颗粒密度250左右)研修光顺整个烧焊周围的型面,直至烧焊处与周围电镀层完全接上 (图10)。
⑷修复的效果。
1)本次维修烧焊30分钟,研修30分钟,较大的缩短维修周期,提高了工作效率。2)图11为修复后的效果,研修后焊点周围电镀层无损坏,制件表面无缺陷。
结论
pagenumber_ebook=22,pagenumber_book=29
图11 修复效果
⑴通过多次利用激光焊接技术对电镀拉延模具的成功修复,激光焊接技术修复法是一项比较成熟的修复方法,已形成操作标准。
⑵在大量的修复工作中,针对焊接不同材料,不同型面的模具,总结出了较合适的焊接参数(表1)。
耙斗机维修工操作规程
熟知耙斗机维修保养规定。一般规定维修电钳工应保证耙斗装岩机处于完好状态和安全可靠地工作。维修工必须遵守电钳工的一般规定,熟悉机器的各部结构和工作面的供电系统,掌握机械设备的完好标准、维修质量标准、油脂管理标准和安全技术保养规定。
下井前必须查阅耙斗机的运行情况记录,认真听取上一班人员的汇报,备足工作器具、常用材料、备品、备件及施工防护用品。工作前,必须检查作业点是否安全,瓦斯浓度是否符合规定,做到不安全不操作。维修工作前,必须切断电源,闭锁开关,并挂好“有人工作、不准送电”牌。
耙斗机对需要打开维修的减速器、滚筒、风动推车器等,要采取严密的防尘及遮盖措施,严防掉入煤、矸、杂物、淋水等。维修拆装必须按维修操作标准执行。维修工作中必须注意保护设备的防爆面不受损伤。拆装零部件时,应注意保管好小零件,严禁将其丢失和掉入机器内部。对需要维修或更换的齿轮、轴承、风管、阀等,必须选用同型号规格的元件。经维修的耙斗装岩机必须达到质量完好标准,由专人联系送电并交当班司机试运转,确认无问题后,方可交付使用。
耙斗机安好尾滑轮并且进行有关的安全检查,便可启动电动机,开始装岩工作。工作时,拉紧工作滚筒的操纵杆,工作滚筒便牵引耙斗,扒取岩石,沿料槽卸人矿车。然后松开工作滚筒操纵杆,拉紧滚筒操纵杆,使空耙斗回到迎头,重复扒岩动作。连扒2—3次便可装满一矿车。
耙斗机还可用于倾斜巷道装岩,但在坡度较大时,除使用原有的前轨器外,还应增设阻车装置,加强防滑措施和安全保护。为保证较高的生产率及便于铺设前轨器,装岩机工作时,离开迎头远不宜**过 15m。为避免放炮时机器受损,机器离迎头一般不小于6m。
耙斗机安好固定楔后,便可把尾轮挂在楔体的圆环上,尾轮的悬挂位置随巷道情况而定,一般悬挂在迎头岩石堆上面800~1000mm高度处为佳,为减轻工作劳动,提高机器的装载率,应视岩石堆积情况而左右移动悬挂位置,以扒净中间和两侧货物为准。在悬挂和取下尾轮时,应先将绞车滚筒边缘的刹车弹簧松载,以便人工能轻松地拉动钢丝绳,便于悬挂,待尾轮悬挂好后,再将弹簧复位或调节到合适压力。