产品规格:
产品数量:
包装说明:
关 键 词:AD623AR亚德诺ADI芯片渠道
行 业:电子 电子有源器件 专用集成电路
发布时间:2022-02-15
深圳市伟格兴电子科技有限公司是一家大型集成电路代理,分销商,公司在深圳.作为的集成电路分销商,我公司拥有丰富经验的IC销售人员,为客户提供全面的服务支持。我公司主要从事美国ADI、MAXIM,TI,ON,ST,FAIRCHILD,ADI,NXP等世界的IC和功率模块 GTR、IGBT、IPM、PIM可控硅 整流桥 二极管等,涵盖通信、半导体、仪器仪表、航天航空、计算机及周边产品、消费类电子等广泛领域。公司多,价格合理。经过我公司全体人员的共同努力, 深圳市伟格兴电子科技有限公司现已成为国有大、中型企业,企业,中小型分销商的可靠合作伙伴,业务遍及中国大陆及海外市场。 我公司在国外拥有直接的货源和存货,与国际上享有良好声誉的大量供应商建立了良好的长期合作关系。定货渠道好,周期短,以‘交货快捷、质量保证、价格合理’为服务的宗旨,保证所提供货品均为原包装。 我公司一贯坚持:“品质、服务至上”的发展宗旨以向用户提供系统 免费技术解决方案和满意的服务为己任。我们希望结交更多的合作伙伴,以合理的价格、的服务,与大家共同开创广阔的未来!同时也希望与业界同行进行广泛的交流与合作,共同为电子业繁荣发展作出自己的贡献!!
电路是一个带有四个输入的基本反相放大器,称为求和放大器。图7的配置与你在教科书中看到的略有不同,因为ADALM1000只提供单个正电源电压。放大器的同相(+)输入连接到2.5 V,即电源电压的一半,而不是接地。这就改变了求和放大器方程式。输入电阻上出现的输入电压现在是相对于2.5 V (即所谓共模电平)进行测量。它们应减去2.5V,因此0VIN变为-2.5V,+3.3VIN变为+0.8V。输出电压也应相对于+2.5V电平来测量。为使常规方程式正确,输出电压也将减去2.5 V共模电平。另一种思路是考虑所有输入均为2.5 V(或悬空)的情况。任何输入电阻中都没有电流流动(其两端的电压为0 V),因此反馈电阻中也没有电流流过(其电压为0 V)。输出电压将为2.5 V。
此电路使用四个数字输出PIO 0、PIO 1、PIO 2和PIO 3作为输入电压 源。每个数字输出具有接近0 V的低输出电压或接近3.3 V的高输 出电压。使用叠加(并校正2.5 V共模电平),我们可以VOUT是VPIO0, VPIO1, VPIO2和VPIO3的线性和,其中每个都有自己特的增益或比例系数(由1 kΩ反馈电阻除以各自电阻所得的比值设定)。
PIO 0值高,输出变化小(低有效位),PIO 3值低,输出变化大(高有效位)。请注意,PIO 3电阻由两个4.7 kΩ电阻并联而成。
为使IPMSM的扭矩电流比大,d轴基准电流id设置为0。 q轴基准电流iq从速度调整器的速度误差获得,如图3所示。电流调整器的输出提供旋转坐标系的基准电压。在图 3所示的框图中,用于去耦控制的正馈项ed和eq由下式给出:
Equation 11
Equation 12
正如Boussak所述,两个补偿机制(电流控制和电压命令)对 于确保稳定和优控制十分重要,有助于增强矢量控制和 弱磁控制。
EKF以其简单、佳、易控制和稳定可靠,成为应用广泛 的非线性系统跟踪和估计方法之一。为实现对凸极IPMSM 的无传感器控制,可以利用EKF估计速度和转子位置。电机 的线路电压和负载扭矩均为系统矢量输入变量。速度和转 子位置是需要估计的两个幅度,二者与电机电流一起构成 状态矢量。电机电流将是构成输出矢量的可观测幅度。
若应用要求采用反激式电路以提供超乎寻常的快速瞬态 响应,则可以利用推挽式拓扑配合隔离式误差放大器实 现。推挽式电路如图5所示。图中,两个MOSFET交替 开关,对变压器的两个初级绕组充电,然后两个带二极 管的次级绕组导通,并对输出滤波器电感和电容充电。 推挽拓扑经补偿后极为稳定,并具有快得多的开关频率 和更快的环路响应。与反激式电路相同的隔离式 DC-DC设计示例(5 V输入到5 V输出,1.0 A输出电流)现 用于采用ADuM3190隔离式误差放大器的推挽式电路 中。相比较慢的200 kHz典型反激式设计,推挽式设计具 有1.0 MHz开关频率;因此,与一款光耦合器相比,带宽 更高的ADuM3190显然是更佳选择。输出滤波器电容从 200 μF(典型反激式)下降至仅27 μF(推挽式),并增加了一 个小型47 μH电感。图6中的波形显示100 mA至900 mA负 载阶跃条件下,集成隔离式误差放大器的推挽式电路响 应时间仅为100 μs,相比典型反激式拓扑的400 μs,速度 提升了4倍。推挽式电路输出电压的改变幅度仅为200 mV, 相比反激式电路的400 mV,其改变幅度减少了一半。使 用速度更快的推挽式拓扑和带宽更高的隔离式误差放大 器,可获得更快的瞬态响应高性能以及更小的输出滤波 器尺寸。
两个定子电流、电机速度和位置用作系统状态变量(更 计算方案请参考Boussak的)。
诸如Bon-Ho Bae和Boussak所开发的部署方法,利用无传感 器控制器的可行性将更模型引入实时电机控制方案。 过去5年来,微控制器和DSP制造商一直积极通过新型嵌入 式处理器提供足够的性能和必要的功能, 这是确保设计人 员将现代矢量控制运用于实际的关键因素。
电机效率始于处理器
如今,像ADI公司的新ADSP-CM40x ARM Cortex-M4系列 等增强型处理器正在将性价比提升到新的水平,使得更复 杂电机控制算法的实施开始受到大规模应用解决方案的青 眯。尤其在处理器能力方面——内置数字滤波器功能、高 性能浮点能力和扩展数算能力等都支持更复杂、集成 度更高的算法,以便提供更佳的控制器和控制方案,迫使 电机驱动的效率接近。在工业领域,对运行实时模型 估计器的多观测器模型的改善,无疑将有助于增强:(i)驱 动性能,(ii)系统效率和拓扑结构,以及(iii)设计的部署方 法。就第(iii)方面而言,MATLAB/Simulink®等图形系统便 能够简化设计流程,促进新算法的开发。这些工具与执行 处理器相结合,能够实现更为复杂的部署方案。与内核速 度、模数转换精度和存储器集成有关的处理器级改善将使 设计人员能够实现更高的质量和性能目标,同时加速产品 上市。
样片零售与批量供应的电子元器件中心,为每个中小企业产品研发提供助力。