价格:2550.00起
深圳长欣自动化设备有限公司
联系人:蓝小姐
电话:+8615359298293
地址:西乡街道臣田社区二路东方雅苑2层B39
产品声明:本公司销售规格型号繁多,无法在此一一展示,本产品型号只是本公司产品的一部分仅供参考,如有错漏敬请谅解。关于县体的规格型号参数咨询,烦请致电销售热线,我们会做出详细的报价和解答。
关于我们:
质量方针:专注品质、信誉至上
服务理念: 让客户产品制造更轻松
经营理念:市场导向,顾客至上,,价值共享
公司始终秉承“诚信、高效、共赢、”的经营理念,本着“,诚信服务,客户至上”的做事态度服务于每一位新老客户,依托强有竞争力的产品价格,庞大的库存,过硬的质量, 快捷的货期以及售前咨询、售后服务,持续为广大客户提供更多更好的产品,长期稳定供应!
ABB 订货号3BHB013085R0001/3BHE009681R0101/GVC750BE101 型号5SHY3545L0009 |
ABB 订货号3BHR023784R1023 型号PPD113B01-10-150000 |
ABB 订货号3BHE014105R0001/5SXE08-0166 型号5SHY3545L0020 |
ABB 订货号3BSE042237R2 型号PP836A |
ABB 订货号3BSE042245R1 型号CB801 |
SST 订货号SST-PFB3-VME-2-E/SST-PFB3-VME 型号PB3-VME-1-E |
SST 订货号SST-PFB3-VME-2-E/SST-PFB3-VME 型号PB3-VME-2-E |
ABB SK829007-B |
ABB 订货号3BSE018137R1 型号CI858-1 |
ABB 订货号3BSE018134R1 型号CI855-1 |
ABB D674A906U01 |
ABB 订货号GVC736BE101/3BHB021400R0002 型号5SHY4045L0004 |
ABB 订货号3BSE050090R65 型号PFEA111-65 |
ABB 128877-103 |
ABB REF615C-D |
129740-002 |
ABB 订货号3BSE076359R1 型号PM866AK01 |
ABB 订货号3BHR023784R1023 型号PPD113B01-10-150000 |
优势品牌:Allen Bradley罗克韦尔1756-1785-1771-1784-1746-1747-1757系列模块1336、1305/1398系列触摸屏驱动,FXOBORO福克斯波罗FBM模块,140模块,TI系列MOOER模块,霍尼韦尔DCS卡件,GEDCS、PLC、工业机器人备件、伺服驱动器、输入输出模块、冗余容错控制系统卡件,公司经销产品应用于数控机械 冶金、石油天然气、石油化工、化工、造纸印刷、纺织印染、机械、电子制造、汽车制造,塑胶机械、电力、水利、水处理/环保、**工程、锅炉供暖、能源、输配电
ABB:工业机器人备件DSQC系列(中二中三,中四, S4C , S4C , IRC5)、Bailey INFI 90等。Robots、OTC Robots、Panasonic Robots、MOTOMAN Robots等ABB Robots、FANUC Robots、YASKAWA Robots、KUKA Robots、Mitsubishi提供:PLC可编程控制系统,分散控制系统(DCS)安全仪表系统(SIS),ESD系统,振动监测系统,汽轮机控制 压缩机组控制系统(CCS)等各类工控系统部件
Westinghouse(西屋): OVATION系统、WDPF系统、MAX1000系统备件Invensys Foxboro(福克斯波罗):I/A Series系统,FBM(现场输入/输出模块)顺序控制、梯形逻辑控制、事故追忆处理、数模转换、输入/输出信号处理、数据通信及处理等。
The reason it is not that simple is because algorithms uncover correlation patterns that may be nothing but coincidental. Algorithms are not yet smart enough to uncover causation; those patterns which indicate the root cause of the missing production or lost downtime. Some data scientists may not yet have that specific problem-solving expertise. They often rely on domain advice from seasoned industry veterans.
Nearly a decade ago, it was projected that the US would need hundreds of thousands of data scientists by 2020. It did not happen. It’s unlikely there were even enough data science students in colleges and universities 10 years ago. Furthermore, it’s not realistic to think employing more data scientists is the only way to uncover causation. To appropriately address the issue, the valuable skillset of the industry’s limited data scientists must be complemented with deeply embedded engineering wisdom and AI applied directly within the business processes. The new direction begins in role-based applications that will eventually lead to the self-optimizing plant (SOP) that is self-learning, self-adapting and self-sustaining. Analysis and performance assessments do not appear from generalized AI workbenches and functionsWithout forgetting supply and delivery issues, the major decisions in a plant are always about asset performance management. This includes the total lifecycle return on assets; when and how hard you run them; when and how they are maintained; and the total expected productivity. Such decisions are intensely domain and engineering specific based on careful periodic assessment of asset operating conditions against expected performance. But decisions often need collaboration to understand real systems equipment interactions. For example, an apparent throughput constraint may be caused by an actual upstream feed issue rather than the equipment itself. Added to that, every decision must be underscored by a clear understanding of fundamental risks and costs, especially across equipment lifecycles.