专业噪声控制厂家 噪声治理
价格:100000.00起
产品规格:
产品数量:
包装说明:
关 键 词:专业噪声控制厂家
行 业:咨询 技术咨询
发布时间:2021-09-10
车间厂房中设置的机器较多,常见的压缩机、风机、空压机以及各类加工设备等,不同机器产生噪音的原因不相同。因此在进行车间厂房噪音治理的过程中,重要的就是找到影响敏感点噪声源的主要贡献,再结合这些噪声源的特性开展综合噪声治理。具体而言,首先是根据各个敏感点所要求的噪声限值要求(即噪声控制的目标)和该点的实际噪声值和倍频程噪声特性;计算出如各个倍频程所需的降噪量。
对于车间厂房内噪声控制的主要方法有:
1、机械设备安装做好减振处理
车间厂房在安装机械设备时就应重视减振处理,具体的做法就是在机械设备的底部采取相应的减振、隔震措施。
2、吸音降噪
一般厂房内的墙面和顶均为混凝土,其吸声较小,因此厂房内混响时间较长,同时设备运行时的噪声衰减也较为缓慢,因此需要开展吸声降噪处理。
3、隔声降噪
隔声降噪主要是降低设备运行时到达降噪点直达声的贡献。
4、阻尼减振
当厂房内设备某些薄板结构存在较为明显的振动时,需要开展阻尼减振降噪处理。
5、消声降噪
对于厂房内的各种风机等设备,需要开展消声处理。
工程机械噪声控制
工程机械是我国装备工业的重要组成部分,它主要用于国防建设工程、交通运输建设,能源工业建设和生产、矿山等原材料工业建设和生产、农林水利建设、工业与民用建筑、城市建设、环境保护等领域。
随着工程机械行业的迅速发展,人们对于工程机械的舒适性和振动噪声控制的要求越来越严格。噪声的控制,不仅关系到乘坐舒适性,而且还关系到环境保护;过高的噪声既会损害驾驶员的听力,还会使驾驶员迅速疲劳,从而对工程机械的行驶作业安全性构成了极大的威胁。噪声控制也关系到工程机械工作的平顺性、耐久性和安全性。因此振动、噪声和舒适性这三者是密切相关的,既要减小振动,降低噪声,又要提高乘坐舒适性,保证产品的经济性,使工程机械的噪声控制在标准范围之内。进入21世纪后,提出了工程机械的环保技术和信息技术,使工程机械发展进入了新的发展阶段。和日本市场对工程机械的噪声实施了更加严格的要求,为配合国际化战略,提升产品技术水平,进一步开拓国际市场,研究工程机械的振动性能及其与内部噪声的关系对降低车辆内部噪声以及提高国产工程机械的竞争能力具有重要意义。
工程机械振动噪声源主要包含动力传动系统的振动噪声,发动机的机体振动、进排气噪声,车架振动以及蒙皮振动噪声等,这些噪声经空气和固体传播。其中,经由空气传播的噪声即空气声主要有发动机的表面辐射噪声、进排气噪声、风扇噪声、气体流动噪声等;而固体传播的噪声即固体声主要是动力传动系统的振动经车架、驾驶室地板及蒙皮产生的低、中频振动噪声。此外由于机械撞击、摩擦和机械载荷的作用,车内装备的运动部件也会产生振动发出噪声。压路机壁板、蒙皮主要是由薄钢板和玻璃板构成,其动态特性十分复杂,模态频率非常密集,声辐射效率也较高,其辐射噪声的频谱中具有明显的振动激励的频率特征,极容易与振动声源发生共振。如果辐射噪声传入密闭空间如驾驶室内,该噪声会在密闭空间内多次反射形成混响,声音将进一步提高,使车内声场接近于扩散声场,并可能产生空腔共鸣现象,所以车内噪声实为直达声与混响声叠加后的结果。相关研究结果表明,车身的结构、材料、形状、大小对车内噪声形成空腔共鸣现起着决定性作用,激励振动大小、振动传递系统的阻尼特性、车身内部吸声材料性质与厚度对车内空腔共鸣噪声峰值有重要影响。
声学设计
在产品或设备研发阶段,同步开展相应的声学设计,包括产品声学目标设计、声学方案设计、实施等内容,从而保证产品在样机阶段具备良好的声学性能。在产品研发阶段开展声学同步设计的优势在于:
可以大幅缩减产品定型后因噪声问题带来的开发周期
可以减少后续的开发成本。
声学同步开发的主要工作包括:
1. 目标值设定
在该阶段,结合产品或设备的定位,给出该产品各种工况时的噪声值。
2. 工程设计阶段
根据设备运行时的声学目标值,确定该设备各个部件的噪声值,安装/布置形式;吸声材料、隔声材料的声学性能和密封的形式。
3. 声学实施阶段
根据上述声学设计,开展吸声和隔声材料的试制、设备的具体安装、声学材料和密封的布置。
4. 声学验证工作
实际设备在标准工况下,设备的噪声分布,检查是否满足初设计要求。
各种气体放空,通常是直接泄放在大气中,放空排气装置的尾端一般为管段或孔,其截面多为圆形,所以,这类放空基本上属自由圆射流。气体流出前的压力一般都很高,一旦从喷口喷出,压力锐减为环境压力,而体积相应扩大,表现为以很高速度流出喷口,气体以很高的速度流出管或孔口,冲击、卷吸静环境气体,形成剧烈扰动,从而辐射出强烈的噪声,这种噪声称为喷流噪声。同时喷注结构一般为亚声速,即出流速度小于当地声速,它大体分为混合区、过渡区和充分发展区三个部分。混合区的长度约为喷口直径D的5倍,混合区内有一个锥形喷注核心,核心气流等于喷气口的流速。在核心周围,喷注与周围卷吸来的气体剧烈混合,它是喷注噪声产生的主要区域,该部分辐射噪声主要为高频噪声。过渡区是离喷口5D~15D区域,该区域气流为湍流运动,是产生噪声的次要区域,喷注噪声频率较低。充分发展区位于15D以外,它产生的喷注噪声一般可忽略。
喷注噪声是宽频带噪声,它的强度及频率可由实际测量得到。如果由理论计算,它的峰值频率可由下式估算:
fm=0.2V/D
式中:fm为喷注噪声的峰值频率(Hz);V为排气速度(m/s);D为喷口直径(m)
喷注辐射噪声的总声功率W可由下式近似计算:
式中:R为常数,实验值为0.3×10-4~1.8-4;ρ为排放气体密度(kg/m3);ρ0为环境大气密度(kg/m3);c0为大气中声速(m/s)
若用声压级表示喷注噪声强度,在离喷口lm远处的声压级Lp可由下列经验公式计算:
式中:g=Ps/P0;Ps为喷口内气流驻点压强,P0为环境压强。
针对排气噪声控制,一般采用排气,主要包括小孔喷注、节流降压和多孔扩散。