价格:面议
0
联系人:
电话:
地址:
消声蜗壳对离心式风机气动性能的影响原风机与不同消声组合试验所得的气动性能对比如图3 所示。试验结果表明: 由于穿孔板相对于光滑的铝板有着较高的壁面摩擦阻力,导致加装穿孔板后的风机压力和效率在整个测试工况范围内都有不同程度的降低。4种消声组合方式的压力损失并不相同,当额定转速为3 800 r /min,在设计工况下,A 组合改进风机全压降低了约16.0 Pa,效率下降了约1.28%; B 组合改进风机全压降低了约5.0 Pa,离心式风机效率下降了约0.9%; C 组合改进风机全压降低了约36.8 Pa,效率下降了约3.18%; D 组合改进风机全压降低了约45.8 Pa,效率下降了约3.28%。
主要由于安装穿孔板的面积不同,导致不同消声组合方式的摩擦损失不同。B 组合即只在风机后盖板上安装穿孔板,离心式风机厂家,风机压力损失小。不同工况下,风机压力和效率损失也不相同,在设计工况及偏大流量工况下,离心式风机压力和效率损失较大,效率也同步降低。主要原因是大流量工况下,蜗壳内部气流速度较高,气流与穿孔板之间的摩擦损失增加。消声蜗壳为A 组合形式时与原风机的出口A声级随流量变化的对比图。可以看出,不同工况下,A 型消声蜗壳的降噪效果不同,离心式风机在额定工况点附近,降噪效果好; 在大流量工况下,高压离心式风机,降噪效果变差,这主要因为大流量情况下,蜗壳内气体流速较大,而气体流速对吸声材料的吸声效果影响很大; 在小流量工况下,风机流动恶化,风机振动较大,导致振动噪声很大以致降噪效果反而变差。与原风机相比,在额定工况点A 声级降低约4.5 dB( A) ,在大流量工况下,A 声级降低约3.6 dB( A) ,在小流量工况下,A 声级降低约1.9 dB( A) 。
针对离心式风机有无进气箱两种结构形式,建立了两种计算模型,利用CFX 软件对两种模型进行数值模拟,研究其内部三维流场特性,基于数值模拟结果分析了进气箱对离心风机的性能影响。数值模拟结果表明:加进气箱后,离心风机的全开流量与压力有所降低,缩短了有效工作区域;在离心式风机内部叶轮进口处产生涡旋现象,堵塞了叶轮流道,离心式风机型号,使风机的效率和压力降低。数值模拟结果与实验测试值对比是比较吻合。进气箱是离心风机重要的组成部分,主要应用于大型离心风机与双吸离心风机。进气箱在其出口处气体发生近90°转弯,临沂离心式风机,内部流场十分复杂,并造成很大的流动损失。其出口速度的不均匀性对离心式风机性能影响明显,有必要对其特性进行研究。A.G.Sheard通过研究加进气箱的通风机,在离心式风机叶轮进口加导流板控制叶轮进口的非均匀气流,结果表明在叶轮进口加导流板能够提高风机的全压,并得出了叶片根部断裂的原因。使用三维粒子动态分析仪(3D-PDA)对大型风机进气箱内部三维气体流场进行测量,揭示了其内部流动的基本特征,为了解进气箱流场结构和流动机理提供了依据。
整机压力云图分布
通过Fluent 软件对掘进工作面离心风机进行流场数值模拟,模拟得出在同流量下,加米字集流器和普通集流器离心风机压力云图可以看出,风机静压从进口至出口逐渐增大,在蜗壳外达到较大。加米字集流器风机进口静压明显高于普通集流器离心风机, 其较大静压达到2 510 Pa,普通集流器达到1 440 Pa;加米字风机的全压较大可达5 860 Pa,而普通集流器较大达到4 260 Pa。
离心式风机集流器的压力用Tecplot 软件对模拟结果进行后处理,可以对离心风机集流器的受压进行对比分析。加米字形集流器和普通圆弧形集流器内部流场受压分布所示, 离心式风机米字形集流器入口压力为-8 000 Pa,到集流器出口达到-18 000 Pa,压差10 000 Pa;普通圆弧形集流器入口压力为-8 000 Pa,到集流器出口达到-16 000 Pa,压差8 000 Pa,小于米字形集流器。同时也可以看出,加米字形集流器压力梯度变化趋势比普通圆弧形集流器平缓,对稳定进口气流,保证气流的均匀及稳定有更明显的作用。