价格:面议
武汉大势智慧科技有限公司
联系人:吴先生
电话:15071485358
地址:湖北省武汉市江夏区光谷大道77号金融港B2栋4层
三维深度信息的配准按不同的图像输入条件与重建输出需求被分为:粗糙配准、精细配准和全局配准等三类方法。粗糙配准研究的是多帧从不同角度采集的深度图像。首先提取两帧图像之间的特征点,这种特征点可以是直线、拐点、曲线曲率等显式特征,也可以是自定义的符号、旋转图形、轴心等类型的特征。随后根据特征方程实现初步的配准。粗糙配准后的点云和目标点云将处于同一尺度(像素采样间隔)与参考坐标系内,通过自动记录坐标,实景建模,得到粗匹配初始值。
经过配准后的深度信息仍为空间中散乱无序的点云数据,实景三维建模报价,仅能展现景物的部分信息。因此必须对点云数据进行融合处理,以获得更加精细的重建模型。以Kinect传感器的初始位置为原点构造体积网格,网格把点云空间分割成很多的细小立方体,这种立方体叫做体素(Voxel)。通过为所有体素赋予SDF(Signed Distance Field,有效距离场)值,来隐式的模拟表面。
PCL(Point Cloud Library)是在吸收了前人点云相关研究基础上建立起来的大型跨平台开源C 编程库,它实现了大量点云相关的通用算法和gao效数据结构,实景建模软件,涉及到点云获取、滤波、分割、配准、检索、特征提取、识别、追zong、曲面重建、可视化等。支持多种操作系统平台,实景三维建模,可在Windows、Linux、Android、Mac OS X、部分嵌入式实时系统上运行。
PCL是一个模块化的C 模板库,其基于以下第三方库:Boost、Eigen、FLANN、VTK、CUDA、OpenNI、Qhull,实现点云相关的获取、滤波、分割、配准、检索、特征提取、识别、追zong、曲面重建、可视化等。