4-megabit 2.5-volt or 2.7-volt DataFlash® AT45DB041B For New Designs Use AT45DB041D The DataFlash incorporates an internal address counter that will automatically increment on every clock cycle, allowing one continuous read operation without the need of additional address sequences. To perform a continuous read, an opcode of 68H or E8H must be clocked into the device followed by 24 address bits and 32 don’t care bits. The first four bits of the 24-bit address sequence are reserved for upward and downward compatibility to larger and smaller density devices (see Notes under “Command Sequence for Read/Write Operations” diagram).
A low-to-high transition on the CS pin will terminate the read operation and tri-state the SO pin. The maximum SCK frequency allowable for the Continuous Array Read is defined by the fCAR specification. The Continuous Array Read bypasses both data buffers and leaves the contents of the buffers unchanged. 5.1.2 Main Memory Page Read A Main Memory Page Read allows the user to read data directly from any one of the 2048 pages in the main memory, bypassing both of the data buffers and leaving the contents of the buffers unchanged. To start a page read, an opcode of 52H or D2H must be clocked into the device followed by 24 address bits and 32 don’t care bits. The first four bits of the 24-bit address sequence are reserved bits, the next 11 address bits (PA10 - PA0) specify the page address, and the next nine address bits (BA8 - BA0) specify the starting byte address within the page. The 32 don’t care bits which follow the 24 address bits are sent to initialize the read operation. Following the 32 don’t care bits, additional pulses on SCK result in serial data being output on the SO (serial output) pin. The CS pin must remain low during the loading of the opcode, the address bits, the don’t care bits, and the reading of data. When the end of a page in main memory is reached during a Main Memory Page Read, the device will continue reading at the beginning of the same page. A low-to-high transition on the CS pin will terminate the read operation and tri-state the SO pin.
Features • Single 2.5V - 3.6V or 2.7V - 3.6V Supply • Serial Peripheral Interface (SPI) Compatible • 20 MHz Max Clock Frequency • Page Program Operation – Single Cycle Reprogram (Erase and Program) – 2048 Pages (264 Bytes/Page) Main Memory • Supports Page and Block Erase Operations • Two 264-byte SRAM Data Buffers – Allows Receiving of Data
RESET Chip Reset RDY/BUSY Ready/Busy Figure 2-1. TSOP Top View Type 1 Figure 2-2. CASON – Top View through Package Figure 2-3. 8-SOIC Figure 2-4. 28-SOIC(1) Note: 1. The next generation DataFlash devices will not be offered in 28-SOIC package, therefore, this package is not recommended for new designs. Buffer Read Data can be read from either one of the two buffers, using different opcodes to specify which buffer to read from. An opcode of 54H or D4H is used to read data from buffer 1, and an opcode of 56H or D6H is used to read data from buffer 2. To perform a Buffer Read, the eight bits of the opcode must be followed by 15 don’t care bits, nine address bits, and eight don’t care bits. Since the buffer size is 264 bytes, nine address bits (BFA8 - BFA0) are required to specify the first byte of data to be read from the buffer. The CS pin must remain low during the loading of the opcode, the address bits, the don’t care bits, and the reading of data. When the end of a buffer is reached, the device will continue reading back at the beginning of the buffer. A low-to-high transition on the CS pin will terminate the read operation and tri-state the SO pin. Status Register Read The status register can be used to determine the device’s Ready/Busy status, the result of a Main Memory Page to Buffer Compare operation, or the device density. To read the status register, an opcode of 57H or D7H must be loaded into the device. After the last bit of the opcode is shifted in, the eight bits of the status register, starting with the MSB (bit 7), will be shifted out on the SO pin during the next eight clock cycles. The five most significant bits of the status register will contain device information, while the remaining three least-significant bits are reserved for future use and will have undefined values. After bit 0 of the status register has been shifted out, the sequence will repeat itself (as long as CS remains low and SCK is being toggled) starting again with bit 7. The data in the status register is constantly updated, so each repeating sequence will output new data.