专业热水器噪声控制品牌 降噪
价格:100000.00起
南京同韵声学科技有限公司
联系人:吴燕芝
电话:17327716419
地址:江苏省南京雨花台区板桥街道孙家社区综合大楼
产品规格:
产品数量:
包装说明:
关 键 词:专业热水器噪声控制品牌
行 业:咨询 技术咨询
发布时间:2021-04-15
一、油气管道声源特性
天然气长输管道工艺场站存在多种工艺管线和工艺设备等多声源发声体。场站在正常运行时,噪声主要来自汇气管、分离器、阀门及调压设备、放空系统以及各类通风扇、排风扇、循环泵等产生的噪声。在非正常运行时,噪声来自放空管、分离器调压时产生的瞬时噪声;清管作业时,主要来自放空管产生的瞬时噪声。
场站噪声强度大小与投入运行的设备及运行工作状况有关。在冬季用气高峰期间,由于管道内部天然气气流的流速和压力较高,工艺管线和设备产生的噪声强度就较大,但其他用气时间,噪声强度相对较低。
根据对场站噪声声源的分析,场站噪声可以分为气流噪声、机械噪声、电磁噪声。
1)气流噪声:当天然气高压气流由干线进入支线时或气流通过调压阀时,由于管道内径变小,导致天然气高压气流冲击、摩擦管道内壁产生的能量,以声波的形式从该处辐射出来,从而产生噪声。一般而言,气流噪声比其它设备的噪声要高10~30dB(A), 是工艺场站的主要噪声源。
2)机械噪声:工艺场站有许多工艺设备快速旋转和往复运动,产生摩擦、冲击,引起机件振动而产生的噪声。
3)电磁噪:由驱动电机的磁场脉动引起的噪声,电机冷却风扇还引起气流噪声等。
二、油气管道噪声满足要求
*共和国石油化工行业标准《SH/T 3146- 2004 石油化工噪声控制设计规范》规定油气管道首先满足厂区作业人员的噪声要求,即:
同时,由于油气管道一般距离居民区较近,因此油气管道噪声辐射到厂界的噪声强度不得**过下表值:
其中:
0类声环境功能区:指康复疗养区等特别需要安静的区域。
1类声环境功能区:指以居民住宅、卫生、文化教育、科研设计、行政办公为主要功能,需要保持安静的区域。
2类声环境功能区:指以商业金融、集市贸易为主要功能,或者居住、商业、工业混杂,需要维护住宅安静的区域。
3类声环境功能区:指以工业生产、仓储物流为主要功能,需要防止工业噪声对周围环境产生严重影响的区域。
4类声环境功能区:指交通干线两侧一定距离之内,需要防止交通噪声对周围环境产生严重影响的区域,包括4a类和4.b类两种类型。4a类为高速公路、一级公路、二级公路、城市快速路、城市主干路、城市次干路、城市轨道交通(地面段)、内河航道两侧区域;4b类为铁路干线两侧区域。
三、油气管道噪声治理
油气管道治理除了常用的吸声、隔声和阻尼等处理手段外,主要的还是针对管道辐射噪声开展。即应该采用声源识别技术,判断管道辐射噪声源的主要位置,而后针对管道开展阻尼吸声隔声复合包裹手段,降低管道辐射噪声。
乘用车声学开发是声学同步设计中,相对开展较多的工作。乘用车声学包开发主要包括以下内容:
1. 概念阶段
1.1 Benchmarking(定标)和目标值设定
1.1.1 对竞品车进行路试和整车空气传播噪声传递函数测试
1.1.2 对竞品车声学包进行技术分析和声学测试
1.1.3 为目标车选择声学包方案
1.1.4 设定整车目标值
噪声测试
2. 工程阶段
2.1 阻尼片仿真分析
2.1.1 测试阻尼材料阻尼性能
2.1.2 进行阻尼片仿真分析
2.2 声学包仿真与设计优化
2.2.1 对平板件进行吸声和隔声测试
2.2.2 材料测试、建模,用于仿真输入
2.2.3 声学包仿真分析与设计优化
2.3 SEA仿真分析
2.3.1 建立SEA模型
2.3.2 将内前围隔音垫、地毯等声学包零件部件集成到SEA模型中
2.3.3 基于目标车型的ATF性能,分解零部件目标值
2.3.4 基于分解出来的目标值,对零部件进行再次仿真分析和设计优化
噪声测试
3. 样件/样车阶段
3.1 隔声性能测试及前围区域设计优化
3.1.1 对内前围隔音垫和地毯隔音垫进行隔声测试
3.1.2 对前围区域各个开孔处进行隔音性能测试
3.1.3 对前围区域各个开孔处进行优化设计
3.2 声载荷测试及目标分解
3.2.1 声载荷测试
3.2.2 对状态的零部件进行声学测试和材料分析
3.2.3 更新并完成SEA模型,然后进行目标值分解
3.3 声学包设计优化并定型
3.3.1 根据新的零部件目标值,对声学包进行进一步的设计优化
3.3.2 对零部件进行吸声和隔声测试,加以验证
3.4 OTS样车验证
3.4.1 样车路试
3.4.2 样车空气传播噪声传递函数测试
3.4.3 通过手工样件对整车进行优化并验证
噪声测试,隔声测试
4. 量产前阶段
对样品车在量产前提供必要的NVH支持
声学设计
在产品或设备研发阶段,同步开展相应的声学设计,包括产品声学目标设计、声学方案设计、实施等内容,从而保证产品在样机阶段具备良好的声学性能。在产品研发阶段开展声学同步设计的优势在于:
可以大幅缩减产品定型后因噪声问题带来的开发周期
可以减少后续的开发成本。
声学同步开发的主要工作包括:
1. 目标值设定
在该阶段,结合产品或设备的定位,给出该产品各种工况时的噪声值。
2. 工程设计阶段
根据设备运行时的声学目标值,确定该设备各个部件的噪声值,安装/布置形式;吸声材料、隔声材料的声学性能和密封的形式。
3. 声学实施阶段
根据上述声学设计,开展吸声和隔声材料的试制、设备的具体安装、声学材料和密封的布置。
4. 声学验证工作
实际设备在标准工况下,设备的噪声分布,检查是否满足初设计要求。
空调噪声控制
空调一般分为商用空调和家用空调。商用空调和家用空调噪声虽然都主要包括管道噪声;进、出风噪声;压缩机噪声等。但由于商用空调和家用空调的使用环境不同,例如对于家用空调而言,需要重点考虑空调噪声对睡眠的影响;因此一般家用空调噪声值通常需要设计在一个更低的要求,从而使得二者噪声控制的目标不同。
对商用空调而言,由于其风量较大,因此在实际工程设计中应当从空调管路、风机等设备设置的位置及选型、风管系统设计的优化、设备的安装减振及管道隔振三方面着手,对空调机组设备进行消声、隔离、减振,从而使得建筑周边及使用房间噪声达到规范规定要求,并有效降低空调设备的噪声值。
同时由于变频空调相对传统空调而言,其舒适度大大提高,并具有节能等优点,因此未来空调的发展将以变频空调为主。在变频空调中,采用了变频器以控制和调整压缩机转速,使得压缩机激励频率产生相应的变化,因此在变频空调中,往往会在某些转速上,激励力的频率与压缩机或压缩机周边器件固有频率一致,从而产生共振,使得压缩机在某些频率上存在结构共振并辐射较大的噪声。
因此对空调主机噪声控制主要是针对压缩机的工作频率范围所辐射的噪声特性开展噪声控制。同时采用声源识别技术分析管道噪声泄露部分进行相应的密封处理。