长沙振动去焊接应力 振动时效时间
价格:18800.00起
陕西安烨顺电子科技有限公司
联系人:刘智
电话:15389687731
地址:陕西省西安市未央区三桥街道世纪大道
产品规格:
产品数量:
包装说明:
关 键 词:长沙振动去焊接应力
行 业:机械 其他行业**设备
发布时间:2021-04-14
对于振动过程的机理,国内外已经进行了大量的研究工作,取得以下的共识。振动就是对金属构件施加周期性的作用力(动应力R动)。在振动过程中,施加到金属构件各部分的动应力R动与内部余应力R叠加,当叠加幅值大于金属构件的屈服极限Rs,即R动+RRs时,这些点晶格滑移,产生微小的塑性变形,达到释放余应力的目的。从微观上看,频谱谐波振动时效就是给金属构件提供机械能,使约束金属原子复位的余应力释放,加快金属原子回复平衡位置的速度。从金属物理学上看,频谱谐波振动时效的过程,实质上是金属材料内部晶错运动、增殖、塞积和缠结的过程。由于金属材料存在位错,所以在构件内部产生的交变动应力与内部的余应力相互叠加,在应力较高的区域,就可产生位错滑移,出现微小塑性变形。位错滑移是单向进行线性累积的,当微应变累积到一个宏观量,金属组织内余应力较大处的位错塞积得以交替开通,局部较大余应力得以释放,构件宏观内应力随之松弛,使余应力的峰值下降,改变了构件原有的应力场,终使构件的余应力降低并重新分布,使较低的应力达到平衡。位错塞积后造成位错移动受阻,从而强化了基体,提高了构件抗变形能力,使构件的尺寸精度趋于稳定。
振动时效工艺的发展及应用
用振动的方法消除金属构件的残余应力技术,于1900年在美国就取得了**。但由于人们长期使用热时效,加上当时对振动消除应力的机理还不十分明确,且高速电机尚未出现造成设备沉重、调节不便,因此该项技术一直未得到发展和应用。
直到60年代由于能源,美国、英国、日本、联邦德国等国才又开始研究振动时效的机理和应用工艺。特别是到70年代由于可调高速电机的出现,推动了振动消除应力装置(VSR系统)的发展:1973年英国制成手提式VSR系统即VCM80,后来美国马丁工程公司也研制出比较的设备LT-100R型VSR系统。法国和苏联也分别生产出PSV型和NB型VSR系统。这些比较的激振装置,促进了振动消除应力工艺的发展和应用。
国内开展这项工作比较晚,首先由孙照清总等老一辈的工程技术74年出国考察访问时,把这项技术带回国内,并开始在机械部、航空部研究一直,并于“六五”期间在机械部提出的攻关课题之一----------提高机床铸件产品质量的大课题里面确定了“振动时效可行性研究”这一子课题,并由北京击穿研究所和机床厂来完成这一课题,我们在七九年自行研制成功交流串激式振动时效简易设备的基础上不断地试验研究,经过几年的努力与其他兄弟院所工厂一期取得了一定的成果,振动时效工艺的可行性,机床所大连理工大学、抚顺石油机械学院等对机理也进行了较深入的研究。由于受当时简易设备的限制,一些工艺参数很难测得也限制了这项技术的研究和应用,于是八五年机械部特批贰万伍千美金,我们与美国马丁公司合作引进了一整套当时世界上的VSR-790型振动时效设备及相关技术。为进一步推动振动时效工艺研究和设备的开发奠定了基础。后来随着使用振动时效设备的厂家不断增多和不少院校对这项技术深入的研究。特别是九一年JB/T5926-91《振动时效工艺参数选择及技术要求》标准的诞生,使得这项技术得以较快的推广和发展,到目前为止,我国已有几千台振动时效设备投入使用,涉及领域包括机床、冶金、航空、航天、、轻工、电力、纺织、风机、建筑、造纸等机械制造行业。
振动时效的原理
国内外大量的应用实例,振动时效对消除和均化残余应力,稳定工件的尺寸精度具有良好的作用。同时对振动时效的机理也做了大量的研究和探讨。
从宏观角度分析,振动时效使零件产生塑性变形,降低和均化残余应力并提高材料的抗变形能力,无意识导致零件尺寸精度稳定的基本原因。从分析残余应力松弛和零件变形中可知,残余应力的存在及其不稳定性造成了应力松弛和再分布,使零件发生塑性变形。故通常采用热时效方法以消除和降低残余应力,特别是危险的峰值应力。振动时效同样可以降低残余应力。零件在振动处理后残余应力通常可降低30~55﹪,同时也使峰值应力降低,使应力分布均匀化。
除残余应力值外,决定零件尺寸稳定性的另一种重要因素是松弛刚性,或零件的抗变形能力。
有时虽然零件具有较大的残余应力,但因其抗变形能力强,而不致造成大的变形。在这一方面,振动时效同样表现出明显的作用。由振动时效的加载实验结果可知,振动时效件的抗变形能力不仅**未经时效的零件,也**经热时效处理的零件。通过振动而使材料得到强化,使零件的尺寸精度达到稳定。
从微观方面分析,振动时效可视为一种以循环载荷的形式施加于零件上的一种附加动应力。众所周知,工程上采用的材料都不是理想的弹性体,其内部存在着不同类型的微观缺陷。铸铁中更是存在着大量形状各异的切割金属基体得石墨。故而无论是钢、铸铁或其他金属,其中的微观缺陷附近都存在着不同程度的应力集中。当受到振动时,施加于零件上的交变应力与零件中的残余应力叠加。当应力叠加的结果达到一定的数值时,在应力集中严重的部位就会**过材料的屈服极限而发生塑性变形。这种塑性变形降低了该处残余应力峰值,并强化了金属机体。而后,振动又在一些应力集中较严重的部位上产生同样作用,直至振动附加应力与残余应力叠加的代数和不能引起任何部位的塑性性别为止,此时,振动便不再产生消除和均化残余应力及强化金属作用。上述解释已由大量的试验加以。
此外,我更主张从错位、晶格滑移等金属学理论上去解释振动时效机理。其主要观点是振动时效处理过程实际上是通过在工件的共振状态下,给工件的每一部位(从微观角度说是工件里的每一个微观晶格)施加一定的动能量,如果施加的这个能量值与微观组织本身原有的能量值(残余应力本身是一种势能)之和,足以克服微观组织周围的井势(也可以说是对恢复平衡的束缚力),则微观区域必然会产生塑性变形,使产生残余应力的歪曲晶格得以慢慢地回复平衡状态,使应力集中处地位错得以滑移并重新钉扎,达到消除和均化残余应力的目的。对于残余应力集中的地方,残余应力值较大,其微观组织本身所具有的回复平衡状态的势能值也较大,所以,此处的残余应力在震动处理过程中消除的就越多。只有从这一观点上才能解释通许多用种观点所解释不通的一些现象,比如:在振动处理过程中我们只需施加一个方向的主动应力,就能消除包括垂直主动应力方向上的所有残余应力等
振动时效技术的原理及应用
近十多年来,国内外使用振动处理的方法消除金属构件内的残余应力,以防止构件变形和开裂,代替传统的热时效和自然时效。这种技术在国外称做”VSR”技术,它是”Vibratory Stress Relief”的缩写,由于这种方法可以降低和均化构件内的残余应力,因此可以提高构件的使用强度,可以减小变形而稳定构件的精度,可以防止或减少由于热时效和焊接产生的微观裂纹的发生。特别是在节省能源、缩短生产周期上具有明显的效果,因此被许多国家大量使用。我们在该项技术的机理研究和应用上取得了较大的进展。
一、振动时效工艺的简单程序
振动处理技术又称做振动消除应力法,在我国称做振动时效。它是将一个具有偏心重块的电机系统称做激振器安放在构件上,并将构件用橡胶垫等弹性物体做支撑,如图所示。
通过控制器启动电机并调节其转速,使构件处于共振状态,约经20—30分钟的振动处理即可达到调整残余应力的目的。图中的振动测试系统是用来监测动应力幅值及其变化的。实际生产上使用中不需要做动应力监测,振动时效设备本身具有模拟振幅监测系统。
可见,用振动调整残余应力的技术是十分简单和可行的。
振动时效工艺
振动时效处理过程是将激振器刚性夹持在被处理工件的适当位置,首先根据零件大小,形状和加持情况来调节激振频率,使零件在其固有频率下进行共振,然后根据零件所需动应力或振幅的大小来调节激振力。零件的振动状态和动应力,可用测量振动和应力的仪表来检测。通常将感受元件(加速度计或速度计)接于被振物体上,振动时,感受元件把接收到得振动信号送往测试仪表,经放大电路将信号放大并指示出各种所需的参数值。振动状态的主要指示参数是振幅、频率和振型。振动状态和激振力的控制是通过控制激振器的控制装置来实现的。它能调节激振力、激振频率和振动时间。被处理零件在所需频率和振动强度下振动一段时间后,振动时效即告结束。
这个工艺过程一般为几分钟或几十分钟。
主要技术参数
转数范围:2000 R/Min-8000 R/Min;
激振力调整范围:0-50KN;
电机额定功率:1500W;
适宜处理工件重量:≤30吨
稳速精度:±1R/Min;
加速度量程:0-50.0g;
电机额定电流:10A;
电机额定电压:150V;
供电电源电压:交流220V±10%,50HZ±4%;
绝缘等级:E级;
工作条件:环境温度:-10℃—+40℃;相对湿度:不大于80%(25℃);