价格:350.00起
上海豫淞电子科技有限公司
联系人:李先生
电话:17321051316
地址:上海闵行浦江新骏环路115号
无线位移传感器稳定性及精度选择上无论何种设备在使用过程中都会出现性能变化,所以对于无线传感器而言,其稳定性还是十分重要的指标。所以在实际的传感器选择时就需要**考虑测量的环境,在对使用环境做出详尽调查之后合理安排传感器的类型。而当一些传感器**龄服役过后还是需要对传感器的性能进一步进行测评,而对于一些环境变量不太稳定的区域,就可以选择一些更为耐用的传感器来应对环境的改变。之所以如此注重传感器的稳定性,是因为无线传感器的稳定性和精度之间是存在着严密的关系,一旦传感器的稳定性出现偏差,那么对于传感器的精度将是致命的打击。在测量时,有时还需要根据测量目的不同来选择无线传感器的类型。一般的测量目的分为定量分析和定性分析两类,对于定性分析而言,有一个概念性的数据结果即可,所以就不必使用精度偏高的传感器;而定量分析需要地得出监测数据,此时就需要精度等级较高的传感器来满足对于测量要求。频率响应传感器的机械性能和结构不但可以影响其度与稳定性,还会对传感器的频率产生影响,只有传感器的频率响应得到十足的保证,传感器的测量范围也才能得到保证。无线位移传感器作为一种分布式传感器网络,和移动ad hoc网络有相似点,但又有很多不同。移动ad hoc网络可以用于没有无线基础设施存在或出于费用和安全方面的考虑不方便设置无线基础设施的场合,而传感器很多时候被布置在近地环境中,地波吸收现象不能被忽视,并且高密度布置的传感器网络中的多用户接口也造成了很高的误率。作为移动通信的两种基本组网模式之一,移动ad hoc网络中的传输模型是典型的多对多式,而传感器网中的传输模型更偏向于分层次模型(多对一传输)。一般来说,无线传感器网络的节点比典型的移动终端或手持设备有更多的资源受限要求,但对于计算的要求则是可有可无的,当需要执行计算任务时,如果通信成本比计算成本低,计算任务就被送到中心节点去执行。 统功耗问题 无线传感器网络应用于场合时,电源不可更换,因此功耗问题显得至关重要。 系统的功耗模型中,我们关心的是: (1) 微控制器的操作模式(休眠模式、操作模式、,潜在的减慢时钟速率等),无线前端的工作模式(休眠、空闲、接收、发射等); (2)在每种模式中,每个功能块的功耗量,及它与哪些参数有关; (3)在发射功率受限的情况下,发射功率和系统功耗的映射关系; (4)从一种操作模式转换到另外一种操作模式(假设可以直接转换)的转换时间及其功耗; (5)无线调制解调器的接收灵敏度和大输出功率; (6)附加的品质因数(如发射前端的温漂和频稳度、接收信号场强指示(RSSI)信号的标准等)。 基于以上考虑,文献[14]提出了一种自组织低功耗网络的协议i-Beans,并具体说明了此网络的功耗。比如,用一个220mAh的小纽扣电池供电,网络的平均消耗电流是100µ;A,取样率是每秒1次,则电池可以持续80天;如果抽样率是每两分钟一次,平均消耗电流降到1.92µ;A,则电池寿命可以延长到13.1年。 为了克服远程无线传感器网络面临的电池工作时间短的问题,美国Millennial Net公司已经将其i-Bean无线技术与来自新兴公司Ferro Solutions的“能量获得(energy harvesting)”技术结合在一起,双方近展示了一个靠感应振荡能量转换器工作的i-Bean无线发射机。这种转换器能由在50mg至100mg力作用下的28Hz至30Hz振荡产生1.2mV至3.6mV的电压,并允许在30m距离上以115Kb/s速率发送数据(无电池)。该公司还与其他公司合作开发太阳能电池板来给无线传感器供电。 在能量优化研究方面,西安交通大学的黄进宏等在文献[15]中提出了一种基于能量优化的无线传感网络自适应组织结构和协议ALEP。与传统的无线微传感器网络协议相比,ALEP更加充分地考虑到实际应用。它将一种能量控制算法引入组网协议,提高了网络的能量利用率,显著延长了无线网络的生命周期,增强了网络的健壮性。通过对ALEP协议进行OPNET仿真,结果显示该协议与传统模式的无线微传感器网络协议相比,在传送相同的数据量的条件下有更的能量特性和信息传输特性。什么是无线传感器网络? 无线传感器网络作为计算、通信和传感器三项技术相结合的产物,是一种全新的信息获取和处理技术。由于近来微型制造的技术、通讯技术及电池技术的改进,促使微小的传感器可具有感应、无线通讯及处理信息的能力。此类传感器不但能够感应及侦测环境的目标物及改变,并且可处理收集到的数据,并将处理过后的资料以无线传输的方式送到数据收集中心或基地台。这些微型传感器通常由传感部件、数据处理部件和通信部件组成,随机分布的集成有传感器、数据处理单元和通信模块的微小节点通过自组织的方式构成网络。借助于节点中内置的形式多样的传感器测量所在周边环境中的热、红外、声纳、和地震波信号,从而探测包括温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等众多我们感兴趣的物质现象。在通信方式上,虽然可以采用有线、无线、红外和光等多种形式,但一般认为短距离的无线低功率通信技术适合传感器网络使用,一般称作无线传感器网络。 无线传感器网络的应用 无线传感器网络节点的微处理能力和无线通信能力使无线传感器网络有广阔的应用前景,以为类加以描述其应用及潜力: a、军事应用 b、生物环境监测 c、健康应用 d、家庭应用 e、工业控制和监测 无线传感器网络体系结构 无线传感器网络体系结构由三个主要部分组成:传感节点,终端节点( Sink)和观察对象。传感节点散布在观察区域内采集与观察对象相关的数据,并将协同处理后的数据传送到Sink。Sink可以通过Internet或通信卫星实现传感器网络与任务管理节点通信。无线位移传感器又称为线性传感器,传感器的作用是把各种被测物理量转换为电量。它分为电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器。有许多物理量(例如压力、流量、加速度等)在转换过程中常常需要先变换为位移,然后再将位移变换成电量。因此位移传感器是一类重要的基本传感器。在生产过程中,位移的测量一般分为测量实物尺寸和机械位移两种。按被测变量变换的形式不同,位移传感器可分为模拟式和数字式两种。模拟式又可分为物性型(如自发电式)和结构型两种。常用位移传感器以模拟式结构型居多,包括电位器式位移传感器、电感式位移传感器、自整角机、电容式位移传感器、电涡流式位移传感器、霍尔式位移传感器等。相较于模拟式位移传感器,数字式位移传感器的一个重要优点是便于将信号直接送入计算机系统。这种传感器发展迅速,应用日益广泛。