价格:100.00起
廊坊新淼源节能科技有限公司
联系人:杜经理
电话:13932657907
地址:河北省廊坊大城县廊坊 大城
反渗透膜,是一种模拟生物半透膜制成的具有一定特性的人工半透膜。一般用高分子材料制成。如醋酸纤维素膜、芳香族聚酰肼膜、芳香族聚酰胺膜。表面微孔的直径一般在0.5~10nm之间,透过性的大小与膜本身的化学结构有关。有的高分子材料对盐的排斥性好,而水的透过速度并不好。有的高分子材料化学结构具有较多亲水基团,因而水的透过速度相对较快。反渗透膜构造示意图超滤膜,是一种孔径规格一致,额定孔径范围为0.001-0.02微米的微孔过滤膜。在膜的一侧施以适当压力,就能筛出小于孔径的溶质分子,以分离分子量大于500道尔顿(原子质量单位)、粒径大于10纳米的颗粒。超滤膜是早开发的高分子分离膜之一,在60年代超滤装置就实现了工业化。超滤膜原理结构反渗透膜与超滤膜具体参数对比参数反渗透膜超滤膜材质聚丙烯腈醋酸纤维素孔径0.5~10纳米0.001-0.02微米运行压力1-7bar12-70bar检测标准20个/毫升100个/毫升净水器水质纯水供饮用**纯水供饮用净水产量小大脱盐效果好一般反渗透膜应具有以下特征(1)在高流速下应具有高效脱盐率;(2)具有较高机械强度和使用寿命;(3)能在较低操作压力下发挥功能;(4)能耐受化学或生化作用的影响;(5)受pH值、温度等因素影响较小;(6)制膜原料来源容易,加工简便,成本低廉。超滤膜的应用特性(1)在超滤过程中不会发生任何质的变化,可以在常温下稳定运行;(2)设备结构精巧,占地面积小,易于操作;(3)超滤分离过程简单,设备自动化程度高;(4)能将不同的分子量物质进行分类处理;(5)对水质的适用性强,应用的范围广。反渗透膜的应用范围电力、石油化工、钢铁、电子、医药、食品饮料、**及环保等领域,在海水及苦咸水淡化,锅炉给水、工业纯水及电子级**纯水制备,饮用纯净水生产,废水处理及特种分离过程中发挥着重要作用。超滤膜的应用范围纯水与**纯水制备工艺中作为反渗透预处理以及**纯水的终端处理;工业用水中用于分离、热源、胶体、悬浮杂质及大分子**物;饮用水、矿泉水净化;发酵、酶制剂工业、制药工业的浓缩、纯化与澄清;果汁浓缩、分离;大豆、乳品、制糖工业、酒类、茶汁、醋等的分离、浓缩与澄清;工业废水与生活污水的净化和回收;电泳漆的回收。反渗透膜污染膜污染一直以来就是人们关注的热点问题,它影响着膜的稳定运行和出水水质,并将缩短膜的使用寿命,因此被认为是制约膜技术广泛应用的关键因素。目前,人们在研制和开发新型反渗透膜的同时,也对膜污染问题进行了更加深入的研究,并不断寻找解决办法。在这个方面,碟管式反渗透(DTRO)的应用避免了一些污染的产生,因为碟管式反渗透具有特殊的流道设计,采用开放式流道,料液通过增压泵经进料口打入DTRO膜柱内,从导流盘与外壳之间的通道流到组件的另一端,在另一端法兰处,料液通过8个通道进入导流盘中被处理的液体以短的距离快速流经过滤膜,然后180度逆转到另一膜面,再从导流盘中心的槽口流入到下一个导流盘,从而在膜表面形成由导流盘圆周到圆中心,再到圆周,再到圆中心的双”S”形路线,浓缩液后从进料端法兰处流出。料液流经过滤膜的同时,透过液通过中心收集管不断排出。浓缩液与透过液通过安装于导流盘上的O型密封圈隔离。因为采用带凸点支撑的导流盘,料液在过滤过程中形成湍流状态,没有滞留区域,所以能上减少膜表面结垢、污染及浓差较化现象的产生,允许SDI值高达20的高污染水源,仍无被污染的风险。由微生物在膜面生长造成的反渗透膜污染现象很普遍,它会使水分子渗透过膜所需要的压力急剧上升,这一问题可以通过一些常用的生物杀伤剂,例如活性氯、臭氧以及紫外线灭菌等方法得以解决,但是频繁的化学洗涤又会降低膜的使用寿命,并给系统中引入一些灭菌副产物,例如臭氧处理富溴盐废水的过程中产生的溴酸盐就被世界卫生组织和美国环境保护署列为一种致物。所以需要针对各自的实际情况选择优的预处理过程。无机盐也是一类很重要的污染物,对于这方面机理的研究也很多,主要集中在考察错流流率和压力等操作参数,以及膜孔隙率和粗糙度等对无机盐在膜表面结晶的影响,然而也有少数学者认为污染过程还会受到膜组件的几何构型以及膜材料等因素的影响。膜剖析(membraneautopsy)是寻找膜污染成因的一种常用方法,它通过分析污染后的膜元件,寻找污染的原因及其机理,当污染过程很复杂而又对其缺乏了解时,这项技术就显得非常有效。Moh-amedou等通过膜剖析对一套老旧的反渗透膜组件的污染过程进行了研究,评估了它的膜老化程度,终使得膜组件的再生变得可能。除了对污染过程以及抑制方法的研究外,从提高膜本体性能出发,开发新型的耐氧化、耐污染反渗透膜也是非常必要的。Wei等通过在膜表面接枝海因物,其耐氯功能的可再生性以及与抑菌功能之间的转化,赋予了改性复合反渗透膜持续高的耐氯和抗微生物污染性能。而在膜材料方面,Park等则针对反渗透脱盐过程开发了用于制膜的新型耐氯聚合物。除了实验考察膜污染过程的研究之外,许多学者还从理论的角度全面分析了反渗透膜过程中出现的污染问题。Hoek等通过模拟一个大型反渗透装置的运行过程,研究了传质动力学、膜污染以及反渗透技术中的工程放大问题。他们所建立的模型为更加深入地研究大型反渗透过程提供了有力工具。另外,他们还指出利用一些新颖的监测方法,可以帮助我们进一步了解反渗透过程中的影响因素,有利于全面和综合的研究反渗透系统。Shon等对海水淡化过程中几种不同的物理化学预处理方法脱除海水中**物的能力进行了评估。这些研究也为针对不同水源选择适宜的预处理方法提供了指导。反渗透膜预处理的目标为了保证反渗透系统的水回收率、透过水质量、透过水流量的稳定、运行费用的化、膜使用寿命的化等,必须进行完善的预处理。具体的目标为:1、 防止膜表面发生污染,即必须尽量去除悬浮固体、微生物、胶体物质及**物,从而防止这些物质在膜表面沉积或污堵在膜元件水流通道;2、 防止膜表面发生结垢,即必须尽量抑制难溶盐如CaCO3、CaSO3、BaSO3、SrSO3、CaF2以及铁、锰、铝、硅化合物等在膜表面的沉积;3、 防止膜承受物理和化学损伤,即必须尽量避免高温、较端的酸性水或碱性水、氧化剂等对膜的影响。反渗透膜系统能耗目前,相对于其他传统的化工分离技术,反渗透膜技术在能耗方面仍然具有很大的优势,Madaeni等研究发现,在食品加工业中,与传统的蒸发工艺相比,通过反渗透膜浓缩果汁中糖分的能耗被大幅度的降低;除此之外,反渗透膜分离过程也避免了因为加热蒸发所导致的糖分损失。脱盐作为反渗透膜技术的传统应用领域,如何降低能耗一直备受关注。Zhu等研究了在低水回收率的条件下发展高通量的反渗透膜,他们发现这可以有效地降低反渗透苦咸水脱盐的制水成本。但与此同时,低水回收率又会导致预处理和盐水管理费用的增加。另一方面,海水淡化过程中,能耗成本远大于膜成本,所以提高膜通量的经济效益十分有限。因此,他们提出未来降低反渗透制水成本的首要驱动力不再是提高膜通量,而应该从提高膜的抗污染能力,降低原料预处理和盐水管理费用,改进控制计划,优化过程,以及利用可再生供能源降低生产成本等方面进行考虑。虽然提高反渗透系统能量利用效率是减轻反渗透大规模利用带来的能源压力的一个有效途径,但是从根本上解决这一问题则需要另辟蹊径,将可再生能源引入反渗透系统。目前,已经有人提出以太阳能、风能和水能等可再生能源作为反渗透系统的供能源,并且已经对实施这种构想的基本原则、装置设计、设备安装、数学模型计算以及经济可行性等方面做了分析。