价格:20000.00起
邹平中博环保科技有限公司
联系人:杨伟明
电话:18860575758
地址:山东省滨州邹平县魏桥镇里八田村商贸区
中博环保废气处理 结构特点: 1、操作方便:设备工作时,实现自动化控制。 2、能耗低:设备启动约20分钟升温至起燃烧温度,**废气浓度较高时耗能仅为风机功率。 3、安全可靠:设备配有阻火系统、防爆泄压系统、**温报警系统及的自控系统。 4、阻力小,净化效率高:采用当今的贵金属钯、铂浸渍的蜂窝状陶瓷载体催化剂,比表面积大。 5、余热可回用:余热可返回烘道,降低原烘道中的消耗功率;也可做其它方面的热源。 6、占地面积小:仅为**业同类产品的80%,且设备基础无要求。 7、使用寿命长:催化剂一般4年更换,并且载体可再生。应用范围: 1、可用于的净化处理2、适用于电线、电缆、漆包线、机械、电机、化工、仪表、汽车、、摩托车、发动机、磁带、塑料、家用电器等行业的**废气净化。 3、可用于各种烘道、印铁制罐、表面喷涂。印刷油墨、机电绝缘处理、皮鞋粘胶等烘干流水线,净化各工序产生的**废气。工艺原理: 催化净化是典型的气固相催化反应,其实质是活性氧参与的深度氧化作用。在催化净化过程中,催化剂的作用是降低活化能,同时催化剂表有吸附作用,使反应物分子富集于表面提高了反应速率,加快了反应的进行;借助催化剂可使**废气在较低的起燃温度条件下,发生无焰燃烧,并氧化分解为CO2和H2O,同时放出大量热能,从而达到去除废气中的有害物的方法。技术特点:1、高效:TiO2光催化氧化设备能高效去除挥发性**物(VOC)、无机物、、氨气、 醇类等主要污染 物,以及各种恶臭味。美国环保署公布的类 114种污染物均被证实可通过光解催化氧化得到治理,即使对原子**物如卤代烃、燃料、含氮**物、**磷也有很好的去除效果。 (TiO2催化剂的寿命是无限延长的,*更换)2、*添加任何化学物质:只需要设置相应的排风管道和排风动力,使恶臭气体通过本设备进行脱臭分解净化,*添加任何化学物质参与化学反应。3、适用范围广:可适应高、低浓度,大气量,不同恶臭气体物质的脱臭净化处理,可每天连续工作,运行稳定可靠。4、成本低:本设备无任何机械动作,无噪音,*专人管理和日常维护,只需作定期检查,本设备能耗低,设备风阻较低< 50pa,可节约大量排风动力能耗。5、设备占地面积小,自重轻:适合于布置紧凑、场地狭小等条件。6、优质进口材料制造:防水、防火、防腐蚀,使用寿命长。7、科技含量高:采用的氧化技术,突破单一体系的反应局气体矿化程度更高,可无害限,在整个反应体系中,有两种氧化能力较强的氧化剂— O3和•OH参与反应,使得脱臭效果更加, 恶臭化排放,**次污染。 拼接式设计,一、技术原理: 光催化处理设备是适应于低浓度VOC废气异味治理的有效方法活。在C波段紫外灯照射在TiO2催化剂上,纳米TiO2催化剂吸收光能的同时发生电子跃进、空穴跃进,电子跃进和空穴跃进强力联合后发生电子空穴对,与外表吸附的H20、O2反应生成活性羟基(•OH)和其他活性氧化类物质(•O2-,•OOH ,H2O2),破所有的**废气分子的化学键,形成无臭无味的H2O和CO2。达标后经排风管排入大气,整个分解氧化过程在1秒内完成。光氧催化工作原理(1)、利用特制波段(157 nm -189 nm)的高能紫外线光束照射**废气和恶臭气体,快速裂解废气和恶臭气体的分子键,瞬间打开和改变其分子结构,破其核酸,产生一系列光解裂变反应,重新进行DNA分子排列组合,降解转变为低分子化学物,如CO2和H2O水分子等物质。(2)、利用特制波段(157 nm -189 nm)的高能紫外光波照射分解空气中的氧分子产生游离氧,即活性氧,因游离氧所携正负电子不平衡所以需与氧分子结合,进而产生臭氧);被紫外光波裂解后呈游离状态的污染物分子与臭氧氧化结合成小分子无害或低害的化合物。如CO2分子、H2O水分子 等。 (3)、利用特制的TiO2二氧化钛光触媒催化氧化过滤棉,在UV紫外光的照射下,产生光触催化反应,较大地提升和加强了紫外光波的能量聚变,在更加高能高效地裂解废气和恶臭气味分子的同时,催化产生更多的活性氧和臭氧,对废气和恶臭气味进行更彻底地催化氧化分解反应,使其降解转化成低分子化合物、水分子和,从而达到脱臭及杀灭的目的。 (4)、高效除恶臭:能高效去除挥发性**废气(VOCs)及各种恶臭气味,脱臭效率较高可达99%以上。二、与传统的**废气处理方法相比,壹哲UV光解废气除臭净化器有哪些**的优点呢?产品优势1)、净化效率高,运行稳定。2)、结构紧凑、设计新颖、体积小、重量轻、运输方便。3)、噪声≤45dB(A),设备风阻≤100Pa。4)、运行成本低、能耗低。5)、紫外光氧化分解+碳化技术。6)、安装及操作方便。7)、清洗及维护方便,使用寿命长。**废气处理催化燃烧处理法工艺流程,在**废气处理工程中针对排放废气的不同情况,可以采用不同形式的催化燃烧工艺,但不论采用什么工艺方式,它的流程组成都具有共同的特点,如:1.进入催化燃烧装置的气体首要经过预处理,除去粉尘、液滴及有害组分,避免催化床层的堵塞和催化剂的中毒。2. 进行催化床层的气体温度必须要达到所用催化剂的起燃温度,催化反应才能进行。因此对于低 于起燃温度的进气,必须进行预热使其达到起燃温度。特别是开车时,对冷时气必须进行预热,因此催化燃烧法适于连续排气的净化,经开车时对进气预热后,即 可利用燃烧尾气的热量预热进口气体。若废气为间歇排放,每次开车均需对进口冷气癸进行预热,预热器的频繁启动,使能耗增加。气体的预热方式可以采用电 热线也可以采用烟道气加热,目前应用较多的为电加热。3. 催化燃烧反应放出大量的反应热,因此燃烧尾气温度很高,对这部分热量必须回收。一般首先通过换热器将高温尾气与进口低温气体进行热量交换以减少预热能耗, 剩余热量可采用其他方式进行回收,在生产装置排出的**废气温度较高的场合,如漆包线、绝缘材料等烘干温度可达300度以上,可以不高置预热器和换热器。 但燃烧尾气的热量仍应回收。VOCS**废气催化燃烧法净化原理吸附浓缩-催化燃烧工艺是活性炭吸附和催化燃烧的组合工艺,**废气经过了吸附-浓缩和催化燃烧三个过程:首先利用活性炭的多孔性和空隙表面的张力把**废气中的溶剂吸附在活性炭的空隙中,使所排废气得到净化;当活性炭吸附饱和后,用热风脱附再生;被脱附出来的**物在催化剂的作用下,能在较低温度的状况转化为无毒无害的和水。由该工艺和其净化原理可知该工艺有以下优点:(1)由活性炭捕获(吸附)废气中的**物,使该工艺具有了活性炭吸附工艺的安全可靠、净化效率高、适应浓度范围广等优点。(2)该工艺采用吸附-浓缩-催化燃烧组合工艺,整个系统实现了净化过程闭环操作,**物一次处理彻底;**次污染。(3)该系统组合紧凑,充分利用热源,节省设备投资和操作费用。首先**物经脱附后被浓缩(用热风脱附出来的**物浓度比原来提高十几倍到几十倍),其浓度接近自然状态,在催化燃烧阶段不需要外加热源就可以分解为水和。其次该工艺设备在运行过程中限度地利用了**废气中**成分的热值。催化燃烧技术的产生及发展概况我国古代以发酵的方法酿酒和制醋,成为人类利用生物催化剂或催化剂的开始。直到18世纪,才出现了有关非生物催化的应用与研究。1740年,英国Ward,J.用和硝石()一起燃烧制;1746年,Roebuck,J.用铅室代替玻璃容器,对Ward的方法进行了改进,这是工业上采用CO催化剂的开始;1806年,法国的Clement,N.和Des-ormes,C.B.阐明了在氧化氮作用下,SO2转化成SO3的机理;1816年,英国化学家Davy,H.发现铂能促进和醇蒸汽在空气中的氧化。1836年,贝采尼乌斯(J.J.Berzelius)提出了"催化"和"催化剂"的概念,于是人们对催化现象的观察和系统研究也于19世纪开始了。1895年奥斯特瓦尔德(W.Ostwald)从理论上推断出了"在可逆反应中,催化剂仅能加速化学反应,而不能改变化学平衡"而获得了1909年度的诺贝尔化学奖。20世纪初,催化合成氨技术的工业化,使催化原理的研究出现了一个高峰,也可以说是催化化学中的里程碑。1913年哈伯(F.Haber)等人利用磁铁矿,发明了双促进熔铁氨合成催化剂,利用原料气循环使用的流程,实现了合成氨的大规模工业生产。在此后的半个多世纪,多相催化工业技术经历了40年代末至50年代初的石油炼制技术的大发展(如催化裂化、加裂解、催化重整和异构化等);70年代至80年代,是石油化工的大发展阶段(如新型择形ZSM-5分子筛催化剂用于异构化、歧化和芳烃烷基化过程等);特别是进入90年代以后,出现了环境催化技术的大发展,例如催化消除氮氧化物(NOx)、氧化物(SOx)、可挥发性**组分(VOCs)的催化氧化。车排气催化净化性能的提高和车排气及黑烟微粒的催化消除,氯氟烃类(CFCs)的催化分解和催化合成代用品,CO2的催化合成利用、催化传感器、燃料电池以及臭氧在低层大气中的催化消除等。因而,我们可以看到,催化技术在解决当前国际上普遍关心的地球环境问题将发挥着重要的作用,并且催化研究也将从初的"以获取有用物质为目的的石油化工催化"的时期,而逐渐地转向了"以消除有害物质为目的的新的能源环保催化"时期。