十堰YZD系列起重用双速三相异步电机批发
价格:0.00起
西安仁丰信机电物资有限公司
联系人:刘定
电话:18189158225
地址:北辰大道泘沱锦绣北区8号楼
使中小型电机定子铁芯能够采用外压装工艺。这样,不仅可以使定子铁芯压装、下线、浸漆和底座、外罩的加工,分两条生产线同时并行,缩短生产周期,并且,外压装的定子铁心下线后,便于采用整体、真空、压力浸漆(VP1)工艺,提高了绝缘处理质量,还可降低绕组温升。此外,定子铁心叠装时如采用合适涨胎,可完全免除对铁心内圆的加工(通常是在立车上磨内圆),而减少定子齿部的空载附加损耗机械加工量少,下线方便,便于拆卸。箱式钢板机座比传统的铸铁机座轻得多,且造型美观。又由于铸造工厂占地面积大,劳动条件差,对环境的污染比较严重治理费用高等因素,更促使了箱式钢板电机的发展。
当电机功率较小时(通常直径也较小),若为平行槽壁,则磁负荷的数值将因受齿根磁密限制而不能取得过高,因为通常齿部磁密大值有一定限制,**过此值后,励磁电流和铁耗将迅速增加同时,还因齿根磁密的限制而使相不能太深,从而限制了槽空间的大小和电负荷的数值。若为平行齿壁,则在齿距、齿宽和相深一定的情况下,直径小的电机中,槽的空间比直径大的电机要小,电负荷也就应选得较小。同样,在内较式电机(如凸较同步电机)中,电枢径变小时,励磁绕组能够占用的空间也将变小,这就限制了励磁磁势的数值,使电枢反应磁势和与之密切有关的电负荷及磁负荷,都不能取得太高。不但如此,电枢直径较小的电机,通常导线较细(因为电流小),绝缘所占比重就较大,使槽的空间利用变差,这时为了尽可能增加槽的空间,必须将齿宽取得狭些,这就要求磁负荷不能取得太高。
电机行业关注的电磁兼容基础方面问题总结
个电磁兼容设计步骤清单?
记录一个看起来非常有道理的电磁兼容设计方。作者将电磁兼容的设计过程分成六个层次,从层开始,电磁兼容问题过于顽固,才启用后面的层次。终,形成一个完整的设计,对照我们现在的流行词语,这相当于一个设计清单。
——有源器件的选型和印刷电路板设计
——地线设计
——屏蔽设计
——滤波设计
——瞬态扰的抑制
把“系统级电磁兼容设计、软件抗扰设计和仿真”运用到每一步,称为“电磁兼容分层与综合设计法”。
2 什么是差模干扰和共模干扰?
电流和电压在电路中传输的时候,有两种形态“差模”和“共模”。对于直流回路,传递电信号至少需要两根线,而回路以外,一定存在着系统的参考地。定义线与线之间传递的干扰信号,称为“差模干扰信号”,而线与地之间传递的干扰信号称为“共模信号”。差模干扰和共模干扰都可以以电流或者电压的形式表达。差模干扰在回路中传导时,两根线中的参数方向相反;共模干扰,在回路中传播时,两根线上的电气参数方向相同。也可以说,差模干扰180°相位差的共模干扰。
差模干扰的形成的两种方式,一个成因是空间磁场在回路中感应生成,另一个成因是回路模干扰,经不平衡电路传导转换形成。差模干扰,本质上是回路中出现了相位不同的另一股电流。避免差模干扰,可以在电路中使用双绞线、屏蔽线或者增加滤波电路。
共模干扰的形成原因,主要是系统对地的电位差,可能是接地不良,或者辐射的电磁干扰信号同方向叠加的结果又或者是上游电源传导过来形成的电压差。共模干扰,本质上是系统零点对地电压差不为零。因此,要想消除共模干扰,一方面改善接地系统,减小自身系统对地的压差;另一方面,在输入端设置滤波电路,滤掉传导来的共模干扰;加强屏蔽,避免外界干扰信号的辐射在电路中感应生成共模干扰。
在电动汽车上,主要的干扰源是电机控制器。共模干扰是电机控制器产生不良影响的主要方式。这一点已经被试验证明。共模干扰在电机控制器上是怎样产生的?
在PWM驱动的电机控制器功率模块中,共模干扰信号的产生主要是两个原因。一种是IGBT与散热器之间存在杂散电容,而共模电压被定义为逆变器回路的中性点对参考地的电位差。这个共模电压随着电路工作情况的不同在不停的波动,电压随着时间的变化率,作用于前面所说的等效电容形成电流1;在共模电压的传导过程中,电压在传播路径上产生电流2。电流1与电流2的和就是PWM逆变器产生的总体共模干扰电流。
谈三相电机绕组端部绝缘控制
三相电机绕组端部,除电机同相线圈自身的匝间绝缘控制外,还涉及异相线圈之间的绝缘,以及线圈与铁芯、机座、端盖等相关零部件之间的绝缘。
相间绝缘是端部绝缘控制的关键,相间绝缘的形状、大小、绑扎方式,异相线圈过线绝缘套管厚度、直径,过线存在焊接情况时的焊接质量,以及处置工艺性,浸漆过程绝缘漆的渗透性、固化效果都是质量控制的关键。
除有绕组铁芯本身的绝缘特性符合性外,整机装配过程中尺寸的关联符合性、工装模具对绕组端部的防护效果,零部件加工的导电异物,都是必须关注的问题。
有的电机绕组,在静态下绝缘性能检测良好,但通电运行过程中,因振动等原因,原来的薄弱环节,因经不起电流和电压的冲击而出现绝缘击穿故障,因而,电机绕组端部处理工艺非常关键,装配过程控制是预防故障发生的关键性要素。
电机绕组的相间绝缘故障
相间故障是三相电机绕组特有的一种电气故障内容,是发生在绕组相与相之间的电气绝缘问题,这种问题会发生在同槽异相的层间绝缘位置,更多的相间问题发生在绕组的端部,特别是涉及跨相及绕组引接线的固定端。
在绕组端部,相与相之间会通过槽间绝缘分开,涉及到的跨相绕组线,会采用绝缘套管进行绝缘处理。但是在绕组绑扎固定及绕组端部过程中,相间绝缘可能会发生不同程度的移位,相间绝缘软管,特别是引线与本线焊接的位置,可能会因为焊点不规则等因素导致套管受损,这些难以避免的因素 是导致相间故障发生的主要原因。
在绕组的浸烘过程中,会因为绝缘漆的渗入而弥补一些先天性制造缺陷,但原来的受损部分仍是电机绕组的电气绝缘薄弱环节。特别是对于2较电机绕组,因为绕组跨距相对较大的客观性,绕组的端部相对困难,从而导致绕组的相间故障几率比较高。鉴于这种特殊性,电机绕组的生产加工过程中,相间绝缘的处置应通过必要的胎具做保证,以减少和消除相间绝缘受损问题。
电机绕组的层间绝缘
现代低压电器的电磁线圈,只要选择质量稳定的高强度漆包线,并且在线圈绕制工艺中严格地控制好线匝排列的均匀度,控制好电磁线本身绝缘层的针孔度、弹性、击穿电压和软化击穿等性能指标,一般靠漆包线的绝缘层即可满足层间绝缘的要求,没必要另加层间绝缘衬垫。
但因层间有一定的电压梯度,同时考虑到线圈在工作过程中可能受到热应力、机械应力、电磁力及溶剂蒸汽压力等一些复杂因素的作用,可能导致线圈的层间绝缘能力下降。为了提高线圈的工作稳定性和使用寿命,目前仍有许多线圈需选择适当的薄膜绝缘材料作为层间绝缘衬垫。
层间绝缘材料的选择
●对于需要采用绝缘漆浸渍处理的线圈,通常宜选用对漆液吸收性强的绝缘纤维薄膜作为层间绝缘,以增强浸渍对线圈深层的渗透作用,并增加浸渍漆的固体组分在线匝间的吸附量(挂漆量)。
●对层间电压梯度较高而又不采用绝缘漆浸渍处理的线圈,可以选用各种绝缘浸渍纤维制品如漆布、漆绸等,其中大、中型低压电器线圈的层间绝缘衬垫亦可选用各种电工用薄膜及其复合制品,如聚酯薄膜、聚酯薄膜绝缘纸复合箔等。这种薄膜构成的线圈层间衬垫绝缘介电性能和耐热性较高,但因厚度比较大,使线圈绕线的填充系数相应降低,一般适用于大、中型低压电器线圈的层间绝缘衬垫。
电机的层间绝缘和相间绝缘
在双层绕组的槽内,存在异相的上下层线圈,它们之间承受的是线电压,所以层间绝缘材料和结构与槽绝缘相同。层间绝缘宽度应能包住线圈,使上下层之间的线圈隔开,其长度应比铁心长度长40~70毫米。
线圈端部处于同相时不另设相间绝缘,但在功率较大或2较电机线圈尺寸较大时,为了加强绝缘,在每个线圈的鼻端包扎玻璃丝带(俗称“包尖”)。在异相的线圈组之间,垫入三角形端部相间绝缘,使相邻异相线圈隔开,承受的是线电压,所以其绝缘材料与槽绝缘相同。
对于低压电机,为了防止飞弧,其绕组对地的小距离为10毫米。