α射线
也称为“甲种射线”。是放射性物质所放出的α粒子流。它可由多种放射性物质(如镭)发射出来。α粒子的动能可达几兆电子伏特。从α粒子在电场和磁场中偏转的方向,可知它们带有正电荷。由于α粒子的质量比电子大得多,通过物质时极易使其中的原子电离而损失能量,所以它能穿透物质的本领比β射线弱得多,容易被薄层物质所阻挡,但是它有很强的电离作用。从α粒子的质量和电荷的测定,确定α粒子就是氦的原子核。
β射线
由放射性同位素(如32P、35S等)衰变时放出来带负电荷的粒子。在空气中射程短,穿透力弱。在生物体内的电离作用较γ射线、x射线强。β射线是高速运动的电子流0/-1e,贯穿能力很强,电离作用弱,本来物理世界里没有左右之分的,但β射线却有左右之分。在β衰变过程当中,放射性原子核通过发射电子和中微子转变为另一种核,产物中的电子就被称为β粒子。在正β衰变中,原子核内一个质子转变为一个中子,同时释放一个正电子,在“负β衰变”中,原子核内一个中子转变为一个质子,同时释放一个电子,即β粒子。 [1]
中子
不带电的粒子流。辐射源为核反应堆、加速器或中子发生器,在原子核受到外来粒子的轰击时产生核反应,从原子核里释放出来。中子按能量大小分为:快中子、慢中子和热中子。中子电离密度大,常常引起大的突变。 辐射育种中,应用较多的是热中子和快中子。
紫外光
或是称为紫外线,是一种穿透力很弱的非电离辐射。核酸吸收一定波长的紫外光能量后,呈激发态,使有机化合物加强活动能力,从而引起变异。可用来处理微生物和植物的花粉粒。
激光
二十世纪六十年代发展起来的一种新光源。
激光也是一种电磁波。波长较长,能量较低。由于它方向性好,仅0.1°左右偏差,单位面积上亮度高,单色性好,能使生物细胞发生共振吸收,导致原子、分子能态激发或原子、分子离子化,从而引起生物体内部的变异。
辐射是一种常见的物理现象,自然界中的一切物体,只要温度在温度零度以上,都以电磁波和粒子的形式时刻不停地向外传送能量,这种传送能量的方式就被称为辐射。一般可依物体传送能量的高低及电离物质的能力分类为电离辐射或非电离辐射。电离辐射包括宇宙射线、X射线和来自放射性物质的辐射,非电离辐射包括紫外线、热辐射、无线电波和微波。
l 电离辐射
电离辐射是指携带足以使物质原子或分子中的电子成为自由态,从而使这些原子或分子发生电离现象的能量的辐射,通常又称为放射性辐射或者核辐射,由于这类辐射发生的能量较高,可以引起周围物质的原子电离,故称之为电离辐射。
电离辐射是一切能引起物质电离的辐射的总称,其种类很多,高速带电粒子有α粒子、β粒子、质子,不带电粒子有中子以及X射线、γ射线。电离辐射的特点是波长短、频率高、能量高。在辐射防护领域,电离辐射是指在生物物质中产生离子对的辐射。电离辐射根据组成的粒子本质不同,可分为α辐射、辐射β、γ(X)辐射、中子辐射,各辐射的主要区分在于其穿透能力的强弱。
电离辐射的来源可以是放射性核素(包括天然的和人工生产的),也可能是核反应装置,如反应堆、对撞机、加速器、核聚变装置等等,也可以是用于医学诊断和的X 射线机等。
l 电离辐射检测仪
由于我们一般将电离辐射称为放射性辐射或者核辐射,所以针对电离辐射检测的设备我们一般情况下将其称为:核辐射检测仪、射线检测仪或者放射性检测仪,它是一种根据电离辐射粒子电离特性原理制造的设备,可以在现场快速测量辐射的强度及识别放射性物质的各类。按照应用及原理的不同,可以分下以下几类
1) 按测量对象性质分
按照测量对象可分为:α射线测量仪、β射线测量仪、γ(x)射线测量仪、中子测量仪。由于不同粒子与物质作用的机理不同,根据需要测量的不同粒子采用不同的传感器,传感器一般可分为气体传感感器、闪烁体传感器、半导体传感器等。
2) 按监测目的分
按照监测目的可分为:粒子强度仪、剂量仪、能谱仪
粒子强度仪:(总α、总β、总γ、中子)仅与粒子数相关,与能量无关。
剂量仪:主要指贯穿辐射、γ、x和中子,不仅与粒子数相关,与能量也有关,但无法区分是哪种核素。
能谱仪:(α、β、γ、x 、中子),区分各种不同的放射性核素,并可以与内置数据库和正确的刻度方法结合确定各种核素的强度及剂量。
3) 按监测用途分
通道式辐射探测器:(行人、车辆、火车、行李包裹、货物、集装箱等)用于出入境检验检疫以及国土安全。
场所(固定点)剂量仪:用于发现监测区域异常排放,对用源场所的剂量进行监控、。
巡测剂量仪:用于核环境、核安全,寻找放射源,发现特殊核材料个人剂量仪:用于从事核安全、核反恐人员的个人剂量监测及核素识别仪:用于识别放射性同位素及特殊核材料的种类并确定其强度,它可分实验室用以及便携式两种。
核废物监测仪:用于核设施、核电站等,对核废物监测并分类表面污染监测仪:有监测路面(车载)、全身及工作衣表面(固定),桌面或任何工作区域局部表面(携带式)。
气体及气溶胶测量仪:测氡气、钍射气、Xe 等惰性气体等流出物监测系统:用于核电站等大型核设施
核成像系统:大型核仪器,采用辐射源和传感器组合,对监测目标扫描成像
医学用途(X射线)
伦琴发现X射线后仅仅几个月时间内,它就被应用于医学影像。1896年2月,苏格兰医生约翰·麦金泰尔在格拉斯哥皇家设立了世界上个放射科。
放射医学是医学的一个专门领域,它使用放射线照相术和其他技术产生诊断图像。这可能是X射线技术应用广泛的地方。X射线的用途主要是探测骨骼的病变,但对于探测软组织的病变也相当有用。常见的例子有胸腔X射线,用来诊断肺部,如肺炎、肺或肺气肿;而腹腔X射线则用来检测肠道梗塞,
自由气体(free air,由于内脏穿孔)及自由液体。某些情况下,使用X射线诊断还存在争议,例如结石(对X射线几乎没有阻挡效应)或肾结石(一般可见,但并不总是可见)。
借助计算机,人们可以把不同角度的X射线影像合成成三维图像,在医学上常用的电脑断层扫描(CT扫描)就是基于这一原理。
X射线穿透能力与其频率有关,利用其容易被高原子序数材料吸收的特点,防护上一般可用2-3mm左右的铅板加以屏蔽。
美国艾伯特.C.盖瑟(英语:Albert C. Geyser)曾利用X射线制造出美容除毛机并建立崔可公司,但因为辐射使他罹患,后为避免扩散,他切除了右手,而X射线的美容除毛机也导致数百万名妇女出现、、感染、溃疡,甚至皮肤等症状。 [2]
测量射线种类:α、β、γ和Χ射线
探 测 器:卤素填充盖革计数管。有效直径1.77”(45mm)。云母薄片密度1.4-2.0mg/cm2 。
显 示 屏:带背光液晶显示器。
平均周期:显示器每3s更新一次显示,默认显示标准强度下前面30s的平均值。平均周期随着辐射强度的增大而缩短。
测量范围:mR/hr: 0.001~100.0
CPM: 0~350,000
μSv/hr: 0.001~1,000
CPS: 0~5,000
Total/ Timer - 1 ~9,999,000 counts
灵敏度:3340 CPM/mR/hr referenced to Cs-137
α射线 ≥ 2.0 MeV
β射线 ≥ 160 keV
γ射线 ≥ 10 keV
精 度:±10%~ ±15%
内置核素:5Sulfur (S35), 90Strontium (Sr/y90), 137Cesium(Cs137), 32Phosphorus (P32), 14Carbon (C14),131Iodine (I131), 60Cobalt (Co60), and Alpha
警报设置范围:mR/hr .001 - 50 / CPM 1 - 160,000,70db @ 1m。
抗饱和:读数的100倍
指 示 灯:每探测到一次计数(一个电离过程),红计数灯就会闪动一次
声音器:内置蜂鸣器(可关闭可实现静音操作)
输 出:Mini USB,输出到计算机或数据记录器端口。
电 源:AA电池X 2节
温度范围:0oC ~50oC
规 格:140 x68 x 33 mm
重 量:220g(不含电池)
标准附件:主机、电池、保护套、立架、USB数据线、原厂校准证书、软件、纸盒
-/gjhjbi/-