技术参数
测量射线种类 α、β、γ和Χ射线
测量量程 0.001-100 mR/h 0.01-1000 μSv/h
0-300000 CPM 0-9999X Total
显示 60mm×42mm大屏幕的高清晰LCD 显示六位数字液晶显示(包含对各种方式和标志符显示)
CAL系数 0.01-9999范围
射线选择开关 对αβ、γΧ射线组合开关选择
传感器 盖革技术管(直径1.75″(45mm) (LND7317)
显示 μSv/h 、mR/h、cps、cpm、Total、HOLD、
值、电量
功能 声光
能量范围 20KeV~3Mev
功能 自行设定值,出厂设计为1μSv/h
Sievert/Rem 显示转换 有
棒图显示 有
保持值显示 有
精度 ±10%
探测器工作温度 -50℃ 到 80℃
重量 460g
尺寸(mm) 170×80×35
电源 9V电池在正常本底下工作480小时,
电源适配器,AC100-240V/9V,500mA。
包装 便携式铝箱
质量保证期 整机保修一年
认证 CE
各种射线,由于电离密度不同,生物效应是不同的,所引起的变异率也有差别。为了获得较高的有利突变,必须选择适当的射线,但由于射线来源、设备条件和安全等因素,目前常用的是γ射线和x射线。
可见光,红外线,紫外线等,是由源自外层电子引起。伦琴射线由内层电子引起。γ射线是由原子核引起。
种类特性编辑
γ射线(伽马射线)
波长短于0.2埃的电磁波。由放射性同位素如60Co或137Cs产生。是一种高能电磁波,波长很短(0.001-0.0001nm),穿透力强,射程远,一次可照射很多材料,而且剂量比较均匀,危险性大,必须屏蔽(几个cm的铅板或几米厚的混凝土墙)。
γ射线是原子衰变裂解时放出的射线之一。此种电磁波波长很短,穿透力很强,又携带高能量,容易造成生物体细胞内的DNA断裂进而引起细胞突变、造血功能缺失、等。
但是它可以杀死细胞,因此也可以作杀死细胞,以作之用。
1900年由法国科学家P.V.维拉德(Paul Ulrich Villard)发现,将含镭的通过阴极射线,从照片记录上看到辐射穿过0.2毫米的铅箔,拉塞福称这一贯穿力非常强的辐射为γ射线,是继α、β射线后发现的第三种原子核射线。
X射线
波长介于紫外线和γ射线间的电磁辐射。由德国物理学家W.K.伦琴于1895年发现,故又称伦琴射线。是由x光机产生的高能电磁波。波长比γ射线长,射程略近,穿透力不及γ射线。有危险,应屏蔽(几毫米铅板)。
α射线
也称为“甲种射线”。是放射性物质所放出的α粒子流。它可由多种放射性物质(如镭)发射出来。α粒子的动能可达几兆电子伏特。从α粒子在电场和磁场中偏转的方向,可知它们带有正电荷。由于α粒子的质量比电子大得多,通过物质时极易使其中的原子电离而损失能量,所以它能穿透物质的本领比β射线弱得多,容易被薄层物质所阻挡,但是它有很强的电离作用。从α粒子的质量和电荷的测定,确定α粒子就是氦的原子核。
β射线
由放射性同位素(如32P、35S等)衰变时放出来带负电荷的粒子。在空气中射程短,穿透力弱。在生物体内的电离作用较γ射线、x射线强。β射线是高速运动的电子流0/-1e,贯穿能力很强,电离作用弱,本来物理世界里没有左右之分的,但β射线却有左右之分。在β衰变过程当中,放射性原子核通过发射电子和中微子转变为另一种核,产物中的电子就被称为β粒子。在正β衰变中,原子核内一个质子转变为一个中子,同时释放一个正电子,在“负β衰变”中,原子核内一个中子转变为一个质子,同时释放一个电子,即β粒子。 [1]
中子
不带电的粒子流。辐射源为核反应堆、加速器或中子发生器,在原子核受到外来粒子的轰击时产生核反应,从原子核里释放出来。中子按能量大小分为:快中子、慢中子和热中子。中子电离密度大,常常引起大的突变。 辐射育种中,应用较多的是热中子和快中子。
紫外光
或是称为紫外线,是一种穿透力很弱的非电离辐射。核酸吸收一定波长的紫外光能量后,呈激发态,使有机化合物加强活动能力,从而引起变异。可用来处理微生物和植物的花粉粒。
激光
二十世纪六十年代发展起来的一种新光源。
激光也是一种电磁波。波长较长,能量较低。由于它方向性好,仅0.1°左右偏差,单位面积上亮度高,单色性好,能使生物细胞发生共振吸收,导致原子、分子能态激发或原子、分子离子化,从而引起生物体内部的变异。
气体探测器以气体为工作介质, 由入射粒子在其中产生的电离效应引起输出信号的探测器。
特点
气体探测器的突出优点: 探测器灵敏, 体积大小和形状几乎不受限制, 没有核辐射损伤或极易恢复以及运行经济可靠等。
包括种类
气体探测器通常包括3类处于不同工作状态的探测器: 电离室、正比室和G - M 管。它们的共同特点是通过收集射线穿过工作气体时产生的电子-正离子对来获得核辐射的信息。G - M 计数管是由盖革( Ge iger)和弥勒( Muller) 发明的一种计数管,使用非常广泛, 其突出特点是制造简单、价格便宜、使用方便; 其缺点为死时间长、仅能用于计数。现在的中子检测器采用的是正比计数器, 所用材料以前是BF3, 现一般为3He。
闪烁探测器
原理
闪烁探测器是利用辐射在某些物质中产生的闪光来探测电离辐射的探测器 [3] 。
组成
闪烁探测器的典型组成: 闪烁体、光导、光电倍增管、管座及分压器、前置放大器、磁屏蔽及暗盒等。
工作过程
( 1)辐射射入闪烁体使闪烁体原子、分子电离或激发, 受激原子退激而发出波长在可见光的荧光;
( 2)荧光光子被收集到光电倍增管( PMT )的光阴极, 通过光电效应打出光电子;
( 3)电子倍增, 并在阳极输出回路输出信号。
种类
( 1) 无机闪烁体: 无机晶体( 掺杂) NaI( T l)、C s(T l)、ZnS( Ag)等
( 2)有机闪烁体: 有机晶体;
有机液体闪烁体及塑料闪烁体等
( 3)气体闪烁体: A r, Xe等。
半导体探测器
半导体探测器给辐射探测器的发展, 尤其对带电粒子能谱学和??射线谱学带来重大飞 [4] 跃。
?? 原理
带电粒子在半导体探测器的灵敏体积内产生电子- 空穴对, 电子- 空穴对在外电场的作用下迁移而输出信号。其探测原理和气体电离室类似, 有时也称为固体电离室。
?? 特点
线性响应好、能量分辨率; ??射线探测效率较高, 可与闪烁探测器相比。半导体探测器广泛地应用在各类射线的检测仪器上, 特别是在??能谱测量领域, 有着不可替代的作用。
常见探测器
个人辐射检测仪
该仪器体积小巧 [1] , 用于佩带在人体躯干上用来测定佩带者所受X 和??辐射外照射个人剂量当量和个人剂量当量率, 主要用途是用于放射性工作人员的个人防护。它可以探测佩带位置当时的剂量当量率, 也可以探测所设定的一段时间内的剂量当量, 并能设置值以声、光或振动进行。测量能量范围为50keV 到1. 5MeV。
-/gjhjbi/-