废气处理UV光解净化器 UV光解净化器净化效率高 永绿
价格:面议
产品规格:
产品数量:
包装说明:
关 键 词:废气处理UV光解净化器
行 业:环保 净化工程
发布时间:2019-09-04
UV光解净化器设备光触媒 生产技术介绍:
光触媒液其主要成分是纳米二氧化钛,制备二氧化钛的方法有:
沉淀法、溶胶凝胶法、W/O微乳液法、气相反应法
均匀沉淀法:以H2SO4法制备钛白粉中的中间产物---钛液为原料,外加金红石型二氧化钛晶种为
促进剂,以十二烷基磺酸钠表面活性剂、尿素为沉淀剂,制备出纳米金红石型二氧化钛分子
溶胶凝胶法:纳米二氧化钛合成一般以钛醇盐Ti (OR) 4 (R= -C2H5, -C3H7, -C4H9)为原料,其主要步骤是:钛醇盐溶于溶剂中形成均相溶液,以保证钛醇盐的水解反应在分子均匀的水解平上进行,由于钛醇盐在水中的溶解度不大,一般选用小分子醇(乙醇、丙醇、丁醇等)作为溶剂,钛醇盐与水发生水解反应,同时发生失水和失醇缩聚反应,生成物聚集形成溶胶,经陈化,溶胶形成三维网络而形成凝胶,干燥凝胶以除去残余水分,有机基团和有机溶胶和水,得到纳米二氧化钛粉体。
当无水乙醇为溶剂制备纳米TiO2时,根据现在有研究结果,典型的试剂配比为:
Ti (OC4H9)4:C2H5OH:H2O = 4:16:1
使用这种工艺生产周期长、产量低、在生产过程中会使用大量无水乙醇等有机物,不适于生产纯无机材料的光触媒。
蒸气凝聚法:利用高频等离子技术对工业二氧化钛粗品进行加热,使其汽化蒸发,再急速冷却可得到纳米级二氧化钛。
气相氧化法:将高纯度的TiCl4高温下氧化来制备二氧化钛,反应温度、停留时间及泠却速度等都将影响气相氧化法得到的二氧化钛的粒子形态。在研究中发现二氧化钛随着停留时间的延长和反应温度升高而增大,金红石型二氧化钛含量随停留时间延长而增加,当反应温度达到1300℃时,金红石型二氧化钛含量出现最大。这种生产工艺方法能源消耗大,对设备腐蚀性强,投资大,并且设备结构复杂,材料要求耐高温、耐腐蚀。
TiCl4(g) + O2(g) ——> TiO2(g) + 2Cl2(g)
n TiO2(g) ——> n TiO2(s)
气相水解法:气相水解法又叫气溶胶法,既可以使用TiCl4为原料,也可以使用 Ti(OR)为原料,其中约含锐钛矿型70%,金红石型30%,平均粒径为30纳米,比表面积为每克50平方米,气相水解法不直接采用水蒸气水解,而是靠氢氧焰燃烧生产的水蒸气气解,反应温度高达1800℃以上,反应中可以通过调节温度,料比,流量,反应时间等参数控制二氧化钛的粒径和晶型。但高纯度的TiCl4在氢焰中进行高温水解而制得的纳米二氧化钛,很难控制反应温度和压强,并且投资很大,工艺复杂。
各种生产方式都有各自的特点:
1、沉淀法:易产生物料局部浓度过高的现象,难以控制粒子的形态,而且生产过程中三废严重。厂家处理污染成本很大。
2、溶胶凝胶法:制备方法简单,成本较低,温度容易控制。
加入硝酸水溶液作用:抑制水解;使得胶体粒子带有正电荷,阻止胶粒凝聚。
用此法制备溶胶稳定,但是生产出的光触媒晶型难以控制,附着力差。
3、W/O微乳液法:原料成本很高,工业化难度大。
4、液相法:需要通过煅烧才能得到锐钛型、金红石型或混合晶型粒子,生产过程中极易导致粒子团聚或烧结。
5、水解法:以TiCl4高温氧化反应为主,能直接得到锐钛型、金红石型或混全晶型粒子,分离较困难,使用大量有机物,这种方法制成的光触媒时效短,放置时间长会出现分层。
UV光解净化器的紫外线UV灯管工作原理介绍:
紫外线光在水银放电管中产生:悬浮着水银蒸汽这种惰性气体,包含两个电极和绝缘器的一根石英
管。水银在254纳米,310纳米和366纳米处达到最高点,产生在200 和400纳米之间的辐射。石英切断较低
的波长,不传送任何低于230纳米的辐射。每个原子由一个原子核,在周围许多电子漂浮在固定的轨道里
组成。 通过增加能量(电)电子被在一个更高的轨道里带来。每种要素显示一种回到它的原先的状态的趋
势。电子将在它的以前的轨道里退却: 过度能量被作为一个光子发出。最通常使用的紫外线灯是用电介
质水银弧光灯或者MPMA灯加压制成的。它可以被生产成几毫米到超过2米的长度。这些灯的寿命从1000到
2500小时内变化。 灯管由石英做成,因为这是传送紫外线光并且同时忍受6到800°C的高温的唯数不多
的材料。 灯管将有少许膨胀并且确实有一个高熔点温度(1100°C) 电极由钨制成: 生产他们的过程极
其复杂。 使用钨,是因为曲线的温度可以升高到超过3000°C。用钼板来连接电极和电线,可以和石英
一起膨胀。并且当加热时仍然能忍受高电压。 灯最后被悬挂到陶瓷(或其它)绝缘器。因为供应电流经
常不足以为一盏MPMA灯提供动力,紫外线灯通常要利用变压器。
UV光解空气净化器机理:
一、本产品利用特制的高能高臭氧UV紫外线光束照射恶臭气体,裂解恶臭气体如:氨、三甲胺、硫化氢
二、利用高能高臭氧UV紫外线光束分解空气中的氧分子产生游离氧,即活性氧,因游离氧所携正负电子
不平衡所以需与氧分子结合,进而产生臭氧。
UV+O2→O-+O*(活性氧)O+O2→O3(臭氧),众所周知臭氧对有机物具有极强的氧化作用,对恶臭气体及其它
刺激性异味有极强的清除效果。
三、恶臭气体利用排风设备输入到本净化设备后,净化设备运用高能UV紫外线光束及臭氧对恶臭气体进
行协同分解氧化反应,使恶臭气体物质其降解转化成低分子化合物、水和二氧化碳,再通过排风管道排
出室外。
四、利用高能UV光束裂解恶臭气体中细菌的分子键,破坏细菌的核酸(DNA),再通过臭氧进行氧化反应
,彻底达到脱臭及杀灭细菌的目的。
UV光解净化器的紫外线UV灯管说明:
1801年的一天,有一位研究太阳光谱的科学家突然想要了解太阳光分解为七色光后有没有其它看不见
的光存在。当时他手头正好有一瓶氯化银溶液。人们当时已知道,氯化银在加热或受到光照时会分解而
析出银,析出的银由于颗粒很小而呈黑色。这位科学家就想通过氯化银来确定太阳光七色光以外的成份
。他用一张纸片醮了少许氯化银溶液,并把纸片放在白光经棱镜色散后七色光的紫光的外侧。过了一会
儿,他果然在纸片上观察到醮有氯化银部分的低片变黑了,这说明太阳光经棱镜色散后在紫光的外侧还
存在一种看不见的光线,这位科学家把这种光线称为紫外线。
这位科学家就是里特.里特制作了第一个干电池,1803年研制成功蓄电池。里特在物理学方面的主要贡献
就是发现了紫外线。紫外线是比紫光波长更短的辐射,是太阳光谱中的一部分,人们用肉眼是看不见的
。强烈的紫外光照射,对人体,生物都有害,但适量的紫外光却可使用感到精神爽快,可以促进机体的
新陈代谢,紫外光在医学上还被用来杀菌。另外,人们根据紫外线的“光激发光”(紫外线诱发物质发
光)现象,还创造了一种新分析方法,即荧光分析,它不仅可以检测物质的结构,而且还可以很清楚地
发现人眼难以发现的机器零件的裂缝。
UV光解净化器使用方法安全及性能保障
1、 由于UV光解系统主要是靠高能紫外线光去裂解有机废气或恶臭气体分子,设备内部主体是石英材质的UV高能紫外线灯管,该灯管只是产生高能量的紫外线光,是将电能直接转化为光能,不产生高热,更不可能产生火花,灯管接线口处也做了严格规范的密封保护,因此UV光解工艺从理论上讲是不会产生着火甚至爆炸等安全事故的。而且纵观国内外同行,也从没听说有单纯光解废气净化工艺的设备有着火类安全事故的,所以请客户放心使用。
2、UV光解催化氧化技术适用范围 各类化工企业,包括医疗,喷涂喷漆,橡胶,印染,食品等; 化工企业污水站废气; 含氮化合物,如氨,胺类,腈类,硝基化合物,含氮杂环化合物等; 碳氢,或碳氢化合物,如低级醇,醛,脂肪酸等。 UV光解催化氧化技术优势 占地小,投资抵; 即开即用,清洗简单,方便维护; 耐冲击负荷,不易受污染物浓度计温度变化影响; 适用范围广,尤其对恶臭气体有很好的去除率。 UV光解催化氧化技术原理 众所周知,紫外线是由电磁波组成,其本身所带有的能量与波长直接有关,波长越短,能量越大。通过采用D波段内的真空紫外线(波长范围170~184.9nm),照射有机气体或恶臭气体分子,当这些气体分子吸收了这类紫外线光后,因紫外线光本身所带有的能量,使有机气体或恶臭气体分子内部发生裂解,化学键断裂,形成游离状态的原子或基团(C*、H*、O*等)。同时,混合气体中的氧气被紫外线光裂解形成游离的氧原子并结合生成臭氧「UV O2→O- O*(活性氧) O* O2→O3(臭氧)】;混合气体中的水蒸气被紫外线光裂解产生羟基「UV H2O→H OH-(羟基) 】,而这些生成的臭氧和羟基具有极强的氧化性,可将废气分子裂解产生的原子和基团(甚至是有机气体或恶臭气体分子)氧化成H2O和CO2等无污染的低分子化合物。 另外,利用高能紫外线光束可裂解恶臭气体中细菌的分子键,破坏细菌的核酸(DNA),再通过臭氧进行氧化反应,彻底达到脱臭及杀菌的目的。
-/gjiafg/-