产品规格:
产品数量:
包装说明:
关 键 词:通信电源技术
行 业:家电 空调 移动空调
发布时间:2019-03-24
通信电源在整个通信基础设施中所占比例虽然不大,但它是整个通信网络的关键性基础设施,是通信网络系统十分重要、**的独立专业。随着通信技术的飞速发展,电信网络结构日益复杂,对电源技术提出了更高的要求,比如性能更加**、可管理性更高;同时,电源设备在节能减排工作中的重要性也日益凸显。以上诸多因素推动着通信电源设备将向着不断提高效率、提高功率密度以及智能化的方向发展。
效率是通信电源的重要指标。效率高、发热少、散热快的通信电源才可以实现高功率密度,也才能提高通信电源可靠性和可用性。提高通信电源的效率通常手段有高频变化、提升整流模块效率以及节能方案等几种途径。提高通信电源效率的一个重要技术手段就是高频变化。高频变化带来的较直接好处是降低通信电源的原材料消耗,使通信电源装置小型化,从而提高功率密度。
理论分析和实践经验表明,电器产品的体积重量与其供电频率的平方根成反比,所以当频率从工频50Hz提高到20kHz时,用电设备的体积重量大体上降至工频设计的(5~10) %。这正是开关电源实现变频带来明显效益的基本原因。高频化又是提高电源动态品质的重要保证,能够使通信电源拥有更为强大、更为灵活、更为高效的供电能力。
直流稳压电源的构成和要求
发布:菲富特电气
风险提示:5G建设不及预期;数据中心建设不及预期
直流稳压电源一般由变压器、整流器和稳压器三大局部组成,变压器把市电交流电压变为所需要的低压交流电,整流器把交流电变为直流电。经滤波后,稳压器再把不稳定的直流电压变为稳定的直流电压输出。
直流稳压电源的技术指标及对稳压电源的要求:
稳压电源的技术指标可以分为两大类:一类是特性指标,如输出电压、输出电滤及电压调节范围。另一类是质量指标,反映一个稳压电源的优劣,包括稳定度、等效内阻(输出电阻)纹波电压及温度系数等。
另外在稳压电路中,要采取短路维护措施,才干保证平安可靠地工作。普通安全丝熔断较慢,用加保险丝的方法达不到维护作用,而必需加装保护电路。
维护电路的作用是维护碉整管在电路短路、电流增大时不被烧毁,其基本方法是当输出电流追赶某一致值时,使调整管处于反向偏置状态,从而截止,自动切断电路电流。
投资建议:5G网络建设大幕有望于2019年开启,大规模设带来通信电源广阔市场空间。建议关注数据中心高压直流HVDC**企业中恒电气,另外建议关注通信基站电源供应商动力源,UPS电源供应商科华恒盛,后备通信蓄电池公司南都电源,机房温控设备供应商英维克,以及防雷领域的中光防雷。
1、大功率直流电源在调电压时,空载电压调不上去这其中的原因是因为电源即使处于空载也要消耗一点点电流,而你把"电流调节"关到零,连一点点小电流都不放出来,当然空载电压也升不起来了所以"电流调节"一般不要调到零。
2、直流电源有电压输出,也有电流输出,再调电压,电压就调不上去了等,这主要可能是因为操作者对"恒压""恒流"概念不甚清楚的原因所引起的;就举个简单的案例好了如果"恒流"灯亮,说明电源工作在恒流状态,这时的输出电压也不是"调"进去的而是由负载决定的只有去调节"电流调节"旋钮,输出电流才会改变,输出电压也随之变化。
3、大功率直流电源有电压却没有电流或有电流却没有电压这两种情况,应该检查下电源负载是否接触良好,负载是否被短路或开路、负载是否符合规范等。
随着时代的进步、科技的发展,应用电子技术迎来了新的春天,无论是在工业还是家居领域中,数字化智能化产品不断崛起、不断面世,自动化产品使用越来越广泛。双母线智能监测直流供电电源广泛应用于高端电子仪器、教学试验和科学研究等领域。目前使用的可控直流电源大部分是点动的,采用分立元件,体积大、效率低、可靠性差,操作不方便,故障率高。随着电子技术的发展,各种电子、电器设备对电源性能要求提高,电源不断朝数字化,高效率,模块化和智能化发展。我们以双母线直接接入供电为基础,设计新一代 DC +48V 直流电源来实现智能监测报警和负载分配。该直流电源电路简单、结构紧凑、性能优越,分别送给配电设备及蓄电池等单元,同时采集 48V 输出电压和蓄电池组的充放电电压及电流,提供电压、电流监测,并会同监控单元共同实现维护和管理功能。直流配电单元为后级设备提供直流电源,为用户的管理和维护提供电流、电压信号,也可根据用户需要提供各支路通断情况及声光告警指示。
作为一个机电一体化的小型配电设备的结构设计,首先要满足其电气功能性要求,即*人民共和国通信行业标准YD/T939-005《传输设备用电源分配列柜》的电气性能要求,在此基础上满足使用性、经济性,安全可靠和外形美观要求。电气设计主要包括导电性能设计、绝缘性能设计、抗电强度设计,相关零件包括导电体、绝缘件等。
更大功率,5G时代通信电源市场空间可观:5G时代,基站设备AAU单扇区输出功率有望从4G时期的40~80W增加至200W甚至更高,运算量的上升也将推动BBU功率进一步提升,5G单站的供电功率预计将达到约4000W甚至更高。因而基站电源存在较大的扩容需求。目前,基站设备供电主要采用-48V直流拉远方案,5G时代BBU集中部署导致部分拉远AAU和机房的空间距离可能进一步增加,有望推动HVDC直流拉远和DPS分布式供电方案的出现。视现网不同场景,假设以上3种方案的建设比例为1:1:1,按照国内约450万宏基站规模测算,我们预计5G基站电源市场空间有望达到约315亿元,相较4G时期大幅提升。
IEC1000-3-4
DL/T5044-2004 《电力工程直流系统设计技术规程》
DL/T5137-2001 《电测量及电能计量装置设计技术规程》
YD/T731-2002 《通信用高频开关整流器》
YD/T585-1999 《通信用配电设备》
YD/T1051-2000 《通信局(站)电源系统总技术要求(暂行规定)》
电网综1997(472)号文《通信电源、机房空调集中监控管理系统暂行规定》
电网交1999(625)号文《通信局(站)电源、空调及环境集中监控管理系统前端智能设备通信协议》
《电信电源维护技术指标》
DL/T5044-95《火力发电厂、变电所直流系统设计技术条件规定》
GB/T3859.l-1993 《半导体变流器基本要求的规定》
GB/T7261-2008 《继电器及继电器保护装置基本试验方法》
GB/17478-2004 《低压直流设备的特性及安全要求》
JB/T8456-2005 《低压直流开关设备》
DL/T5136-2001 《火力发电厂、变电所二次接线设计技术规程》
DL/T459-2000 《电力系统直流电源柜订货技术条件》
YD/T983-1998 《通信开关电源设备电磁兼容性要求及测量方法》
1.1 供电方式的选择
供电方式一般分为:集中式供电系统和分布式供电。现代电力电子系统一般采用采用分布式供电系统,以满足高可靠性设备的要求。
1.2 电路拓扑的选择
开关电源一般采用单端正激式、单端反激式、双管正激式、双单端正激式、双正激式、推挽式、半桥、全桥等八种拓扑。其中双管正激式、双正激式和半桥电路的开关管承压仅为输入电源电压,60%降额时选用600 V的开关管比较容易,而且不会出现单向偏磁饱和的问题,这三种拓扑在高压输入电路中得到广泛的应用。
1 .3 功率因数校正技术
开关电源的谐波电流污染电网,干扰了其它共网设备,还可能会使采用三相四线制的中线电流过大,引发事故,解决途径之一是采用具有功率因素校正技术的开关电源。
1.4 控制策略的选择
在中小功率的电源中,电流型PWM控制是大量采用的方法,在 DC-DC变换器中输出纹波可以控制在10 mV,优于电压型控制的常规电源。
硬开关技术因开关损耗的限制,开关频率一般在350 kHz以下;软开关技术是使开关器件在零电压或零电流状态下开关,实现开关损耗为零,从而可将开关频率提高到兆赫级水平,此技术主要应用于大功率系统,小功率系统中较少见。
1.5 元器件的选用
因为元器件直接决定了电源的可靠性,所以元器件的选用是非常重要。元器件的失效主要集中在以下四点:制造质量问题、器件可靠性的问题、设计问题、损耗问题。在使用中应对此予以足够重视。
1.6 保护电路
为使电源能在各种恶劣环境下可靠地工作,应在设计时加入多种保护电路,如防浪涌冲击、过欠压、过载、短路、过热等保护电路。
-/gbaafjc/-