概念数据模型(Conceptual Data Model):简称概念模型,主要用来描述世界的概念化结构,它使数据库的设计人员在设计的初始阶段,摆脱计算机系统及DBMS的具体技术问题,集中精力分析数据以及数据之间的联系等,与具体的数据管理系统(Database Management System,简称DBMS)无关。概念数据模型必须换成逻辑数据模型,才能在DBMS中实现。 概念数据模型是终用户对数据存储的看法,反映了终用户综合性的信息需求,它以数据类的方式描述企业级的数据需求,数据类代表了在业务环境中自然聚集成的几个主要类别数据。 概念数据模型的内容包括重要的实体及实体之间的关系。在概念数据模型中不包括实体的属性,也不用定义实体的主键。这是概念数据模型和逻辑数据模型的主要区别。 概念数据模型的目标是统一业务概念,作为业务人员和技术人员之间沟通的桥梁,确定不同实体之间的层次的关系。在有些数据模型的设计过程中,概念数据模型是和逻辑数据模型合在一起进行设计的。 逻辑模型 逻辑数据模型(Logical Data Model):简称数据模型,这是用户从数据库所看到的模型,是具体的DBMS所支持的数据模型,如网状数据模型(Network Data Model)、层次数据模型(Hierarchical Data Model)等等。此模型既要面向用户,又要面向系统,主要用于数据库管理系统(DBMS)的实现。 逻辑数据模型反映的是系统分析设计人员对数据存储的观点,是对概念数据模型进一步的分解和细化。逻辑数据模型是根据业务规则确定的,关于业务对象、业务对象的数据项及业务对象之间关系的基本蓝图。 逻辑数据模型的内容包括所有的实体和关系,确定每个实体的属性,定义每个实体的主键,实体的外键,需要进行范式化处理。 逻辑数据模型的目标是尽可能详细的描述数据,但并不考虑数据在物理上如何来实现。 逻辑数据建模不仅会影响数据库设计的方向,还间接影响终数据库的性能和管理。如果在实现逻辑数据模型时投入得足够多,那么在物理数据模型设计时就可以有许多可供选择的方法。