价格:99.99起
浔之漫智控技术(上海)有限公司
联系人:浔之漫智控技术(上海)有限公司
电话:15821971992
地址:上海市松江区松江工业区广富林路4855弄星月大业**88栋3楼
1、传输线拐角要采用45°角,以降低回损 2、要采用绝缘常数值按层次严格受控的高性能绝缘电路板。这种方法有利于对绝缘材料与邻近布线之间的电磁场进行有效管理。 3、要完善有关高精度蚀刻的PCB设计规范。要考虑规定线宽总误差为+/-0.0007英寸、对布线形状的下切(undercut)和横断面进行管理并*布线侧壁电镀条件。对布线(导线)几何形状和涂层表面进行总体管理,对解决与微波频率相关的趋肤效应问题及实现这些规范相当重要。 4、**引线存在抽头电感,要避免使用有引线的组件。高频环境下,较好使用表面安装组件。 5、对信号过孔而言,要避免在敏感板上使用过孔加工(pth)工艺,因为该工艺会导致过孔处产生引线电感。 6、要提供丰富的接地层。要采用模压孔将这些接地层连接起来防止3维电磁场对电路板的影响。 7、要选择非电解镀镍或浸镀金工艺,不要采用HASL法进行电镀。 8、阻焊层可防止焊锡膏的流动。但是,由于厚度不确定性和绝缘性能的未知性,整个板表面都覆盖阻焊材料将会导致微带设计中的电磁能量的较大变化。一般采用焊坝(solder dam)来作阻焊层的电磁场。 这种情况下,我们管理着微带到同轴电缆之间的转换。在同轴电缆中,地线层是环形交织的,并且间隔均匀。在微带中,接地层在有源线之下。这就引入了某些边缘效应,需在设计时了解、预测并加以考虑。当然,这种不匹配也会导致回损,必须较大程度减小这种不匹配以避免产生噪音和信号干扰。 |
电感线圈也是家用电器、仪器仪表及其他电子产品中常用的元件之一,是利用电磁感应的原理进行工作的电子元器件。它的电特性和电容器相反,“通低频,阻高频”。高频信号通过电感线圈时会遇到很大的阻力,很难通过;而对低频信号通过它时所呈现的阻力则比较小,即低频信号可以较的通过它。电感线圈对直流电的电阻几乎为零。
在电子电路中,电感线圈主要是对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振电路的作用。
在电路图中,电感线圈用字母L表示。电感线圈的图形符号主要如下图所示。
电感线圈的主要特性参数
1.电感量
电感量是指电感线圈通过电流时,产生自感能力的大小。
电感量的单位为亨利,用字母H表示。常用的单位是毫亨(mH)、微亨()。它们的 换算关系为:
2.品质因数
电感线圈中储存能量与消耗能量的比值称为品质因数,又称Q值,其定义式为:
式中,w为T作角频率,L为线圈电感量,R为为线圈的总损耗电阻。
3.额定电流
电感线圈的额定电流是指电感线圈在正常工作时,允许通过的较大电流。额定电流是高频、低频阻流线圈和大功率谐振线圈的重要参数。
4.分布电容
分布电容是指线圈匝与匝之间形成的电容,即由空气、导线的绝缘层、骨架所形成的电容。这些电容的总和与电感线圈本身的电阻构成一个谐振电路,产生一定额率的谐振,降低电感线圈电感量的稳定性,使Q值降低,通常应减小分布电容。为减小电感线圈的分布电容,一般都采用了不同的统制方法,如采用间绕法、蜂房式绕法等。
对于需要电池供电的便携式系统,功率问题成为电路设计考虑的重要因素之一。芯片电路的功耗主要来自开关的动态功耗和漏电的静态功耗。动态功耗主要是电容的充放电(包括网络电容和输入负载)以及P/N MOS同时打开形成的瞬间短路电流。静态功耗主要是扩散区与衬底形成二极管的反偏电流和关断晶体管中通过栅氧的电流。工作时序及软件算法设计有缺陷,会降低系统工作效率、延长工作时间,也会直接增加系统能量的消耗。本文将具体阐述设计理念在基于MSP430和MFRC522的读写器上的应用与实现。 模块电路设计 系统选用MSP430F413单片机和MFRC522射频芯片。为简化系统结构,本系统仅由低电压报警单元、MCU单元、射频收发单元、天线、红外发射接收以及外围信号组成。 本系统选用的是SPI接口方式,其连接图如图1所示。 图1 MCU与射频接口及下载接口图 MSP430选用JTAG接口下载程序。为了进一步减少功耗,在系统处于休眠模式时可通过指令关闭SPI接口和MCU中无用的端口。 射频卡读写器采用电感耦合式天线,主要用于产生磁通量,而磁通量用于向射频卡提供电源并在读卡器与射频卡之间传输信息。当一个RFID系统正常工作时所需的磁感应强度B一定时,安培匝数NI由环形天线的边长a以及标签和读写器天线的距离x来共同决定。其关系式为: 电感耦合式天线的特征值主要有品质因数(Q)和谐振频率。一般而言,Q一方面衡量能量的传输效率,另一方面也衡量频率的选择性。对于并联谐振回路,Q可以定义为: Q=2πfRC=R/(2πfL)(f在本系统中为13.56MHz) (2) 式中:f为谐振频率;R为负载电阻;L为回路电感;C为回路电容。Q值越高,天线的输出能量越高,然而太高的Q值会干扰读写器的带通特性,从而无法遵从协议标准。一般来说,Q=20时,整个系统的带通特性与带宽都比较好。RFID系统中的品质因数一般在10~30内取值,较大不要**过60。 MFRC522从TX1和TX2引脚发射的信号是已调制的13.56MHz载波信号,辅以多个无源器件实现匹配和滤波功能,以直接驱动天线。其匹配电路和信号接收电路如图2所示。 图2 天线匹配电路 红外发射接收电路部分的设计目的是为了节省电源开支,当系统处于休眠模式时停止发射无线电波,可外加一个红外对管来检测是否有卡进入天线范围。当红外接收管接收到外界有卡时立即进入中断,跳出休眠模式,对外发射无线电波,并进行相关的操作。这种通过指令间断打开红外发射管检测是否有卡再进入中断唤醒CPU 和打开天线的方法缩短了天线和红外管的电流消耗,从而节省了功耗。 软件设计 CPU的运行时间对系统的功耗影响很大,所以应尽可能缩短其工作时间,使系统较长时间处于休眠或低功耗模式。当系统上电完成初始化操作后立即进入休眠模式,只有当红外接收管接收到信号时产生中断才打开天线进入工作模式。其中断服务程序如下: #pragma vector=PORT2 _VECTOR__interrupt void Port_2(void) { LPM3_EXIT; //退出休眠 PcdAntennaOn(); //开启天线 PcdReset(); //RC522复位 P1OUT = 0xFF; //打开SPI接口 station=1; //转入工作模式 P2OUT|=BIT6; //LED亮 P2IFG&= ~(BIT7); //标记} 图3是程序运行的流程图。 图3:程序运行流程 MSP430有五种低功耗模式,本系统采用的是LPM_3,此时DC发生器的DC电流被关闭,只有晶振活动。用晶振做系统主时钟和定时器时钟源,对红外接收管脚中断使能定义,使红外发射管每隔0.24s发射一个0.03ms的脉冲,间断地检测在天线范围内是否有卡,有卡时红外接收管产生中断进入中断服务程序。这样让I/O口间歇运行既不影响正常读卡也能节省电能。 尽量减少CPU的运算量,将一些运算的结果预先算好,放在Flash里,用查表的方式代替实时计算,需要运算时较好使用分数运算,尽量避免浮点数运算。定义变量时,尽量使用字符型变量。减少CPU的运算量可以有效降低CPU的功耗。 总结 本文利用MSP430单片机的中断、定时、运算等功能,借助于软件优势,及MFRC522的低电压,小体积等特点,使读卡器读卡距离为0~60mm,休眠模式的电流<10μA,工作模式时电流约为150mA,延长了电池的寿命,增加了系统可靠运行的时间。 |