苏州人脸识别系统 停车场报送系统 速度快
价格:0.00起
在计算机技术的快速发展过程中,生物工程技术也得到了迅猛发展。人们对身份验证实现自动化的要求逐渐提高。通过人体生物特征来进行身份识别已经成为安防系统的。相比其他生物特征,人脸特征具有非接触性、稳定性好、难仿冒等优点,易于为用户所接受。所以人脸识别技术具有广阔的市场应用前景。本课题通过把人脸识别技术与嵌入式技术相结合,针对人脸识系统上的具体实现问题,分别从硬件系统设计,嵌入式人脸识别软件设计以及人脸识别过程三方面对人脸识别技术在以Hi3515高性能音视频处理器为核心的嵌入式系统上的实现作了深入研究。硬件部分介绍了基于Hi3515处理器的人脸识别系统的硬件环境,主要分为重力传感模块、人脸采集模块、Hi3515中心处理模块、门禁控制模块等。嵌入式人脸识别软件设计实现部分主要包括部分:重力传感部分、人脸识别部分、门控部分。在计算机视觉领域里,一套完整的人脸识别系统全过程有人像获取、预处理、人脸检测、提取特征以及识别或确认等。针对人
随着科技的发展,人脸照片、人脸视频、三维人脸模具越来越容易获得,基于人脸认证的攻击越来越多,技术也越来越高,对系统的安全带来了严重的挑战。
研究基于人脸识别的课堂考勤系统,借助信息技术,以人脸识别为手段,彻底摒弃传统课堂考勤中人工统计管理的落后方式,克服不规范的考勤行为,解决学校以往考勤管理工作中出现的问题,为学校的考勤制度实施提供科学的依据。
本主要工作及应用创新如下:
(1)提出了基于稀疏表示和网络相结合的人脸识别算法。针对人脸识别过程中识别速度较慢的问题,依据压缩感知理论,利用小波变换对图像进行稀疏化处理。然后采用改进BP人工网络对图像进行训练。采用较少的元素表示人脸图像,不仅能对人脸图像进行降维,还能滤去局部光照、表情细节以及其他面部部件引入的高频干扰信息,**人脸的主要特征,得到适合于计算机识别的低维图像,提高了人脸识别速度。
(2)设计了完整的基于人脸识别的学生课堂考勤系统。通过摄像头采集人脸图像,然后对人脸图进行预处理,并对人脸进行标定,分割出人脸图像;采用基于稀疏表示和网络相结合的人脸识别算法,进行人脸识别,然后把识别结果信息保存到数据库中,完成学生课堂考勤操作。
(3)设计并开发了基于C/S和B/S混合体系结构的学生课堂考勤系统。人脸识别采用C/S模式开发,考勤信息管理的设置与查询采用B/S模式开发。数据库服务器主要为考勤资料和考勤数据的存取提供服务。Web服务器为请假管理、考勤数据的查询和输出提供服务。学生可以通过网络查询个人的考勤情况,不受环境限制。
一种人脸识别系统,其特征在于,包括:人脸信息采集子系统,负载均衡子系统,以及至少一个人脸识别子系统,其中,所述人脸信息采集子系统,用于获取人脸信息,并向所述负载均衡子系统发送人脸识别请求,其中,所述人脸识别请求中至少携带有所述人脸信息;所述负载均衡子系统,用于基于各个人脸识别子系统分别对应的平均负载值,从所有人脸识别子系统中,选取一个所述人脸识别子系统,并将所述人脸识别请求转发至选取的所述人脸识别子系统;所述人脸识别子系统,用于从自身管辖的所有人脸识别服务器中,选取预设数目的人脸识别服务器分别对所述人脸识别请求中携带的人脸信息进行处理,获取每一台人脸识别服务器在处理所述人脸信息后生成的处理结果,并基于各个处理结果,获取所述人脸信息对应的人脸识别结果。